• Title/Summary/Keyword: crash analysis

Search Result 492, Processing Time 0.023 seconds

A Study on Side Impact from Car-to-Car using Finite Element Analysis (유한요소해석을 이용한 차대차 측면충돌에 대한 연구)

  • Han, Yuong-Kyu;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • The deformed degree of car body varies largely with the collision part from side collision of car-to-car. In case of deformation of car body caused by collision, the movement is different as speed energy changes to strain energy. Generally, in the analysis of traffic accident, the movement of car after the collision is analyzed by law of conservation of motion and the error of energy absorption rate along the deformation of car body can be calibrated by inputting coefficient of restitution, but it is current situation that coefficient of restitution applied by referring to the research results of forward collision and backward collision because the research results of side collision is rare. Vehicle model of finite element method applied by structure of car body and materials of each component was analyzed by explicit finite element method, and coefficient of restitution and collision detection time along contact part of side collision was drawn by analyzing the results. Analysis result acquired through the law of conservation momentum by applying finally-computed coefficient of restitution and crash detection time compared to collision result of actual vehicle. As a result, the reliability of analysis was higher than the existing analysis method were acquired when applying the drawn initial input value that used finite element method analysis model.

Study on Computational Simulation of a Metro Collision Accident and Improvement of Passive Safety (도시철도 충돌사고 시뮬레이션 및 충돌안전도 개선방안 연구)

  • Jung, Hyun Seung;Son, Seung Wan;Kwon, Tae Soo;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.885-892
    • /
    • 2015
  • In this study, we simulate the railway crash accident that occurred at the Sangwangsimni station on the Seoul Metro Line #2, and we propose a solution to minimize the damage. We use LS-DYNA, which is the commercial software employed for collision analysis to perform 1-D and 3-D simulations for the recurrence of accidents. By performing 1-D simulations, we analyze the load, displacement, absorbed energy of the couplers, and acceleration of vehicles, and we evaluate the safety in accidental collisions. By performing 3-D simulations, we analyze the deformation of the car and over-ridding. We propose methods to improve the safety in collisions involving railway vehicles, and we perform collision accident simulations to determine improvements when applying a high-performance energy absorber to the front car.

A Study on Crashworthiness Optimization of Front Side Members using Bead Shape Optimization (비드 형상 최적화를 이용한 전방 측면 부재의 충돌 최적화 연구)

  • Lee, Jun-Young;Lee, Jung-Suk;Lee, Yong-Hoon;Bae, Bok-Soo;Kim, Kyu-Hak;Yim, Hong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.331-337
    • /
    • 2012
  • In this study, the front side member is optimized using a topography optimization technique. Optimization of a simple beam is conducted before optimization of the front side member. The objective function is set to minimize the first buckling factor in the longitudinal direction. The design variable corresponds to the perturbation of nodes normal to the shell's mid-plane space. The crash analysis is conducted on a simple beam, which is optimized by Response Surface Method and the topography optimization technique. In order to verify the topography optimization technique, the results of the RSM and topography optimization model are compared. Consequently, we confirm the satisfactory performance of the topography optimization technique, and apply this topography optimization to the front side member. Thus, the front side member is optimized and its crashworthiness is increased.

Accident Reduction Effectiveness of Safety Management Programs for a Commercial Transport Company (운수업체의 안전관리를 통한 교통사고 감소 효과분석 (천사 2020 프로젝트를 중심으로))

  • Jeong, Sang-Ho;O, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.53-62
    • /
    • 2011
  • This study discusses the effectiveness of safety management programs resulted from examining crash data collected during the period of implementation of the programs by a commercial transport company. For the analysis, two tye of comparison approaches are adopted: 1) a study comparing before-after of the implementation of a safety program, and 2) a study comparing a traffic accident index for various target groups. Technically, the effect of the safety management program is derived by eliminating both the 'regression to the mean' and the changing trend in the traffic accident index. The results show that safety management programs are effective to prevent traffic accidents, whereas company type appears irrelevant. The results also show that the effectiveness is significantly different depending on the intensity of safety management program and company size. In addition, a reciprocal effect is very likely to existamong the combination of these variables. This indicates that in order to improve the accident reduction effectiveness of such programs, the development and application of safety management programs based on both safety management strength and company size are required.

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.

Transverse Low Velocity Impact Failure Behavior of Triaxial Braided Composite Tube with Different Braiding Angles (Triaxial braiding 기술을 이용한 원형 튜브의 횡방향 저속충격파괴 거동분석)

  • Sim, Ji-hyun;Park, Sung-min;Kim, Ji-hye;Shin, Dong-woo;Chon, Jin-sung;Kim, Jae-kwan;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.246-252
    • /
    • 2016
  • In comparison to metal alloys, braided composite features a high impact resistance and crash energy absorption potential, and also it still remained competitive stiffness and strength properties. Braiding angle is one of the most important parameters which affect the mechanical behaviors of braided composite. This paper presents transverse low velocity impact failure behavior analysis on the carbon 3D triaxial braided composite tube with the braiding angle of $20^{\circ}$, $50^{\circ}$ and $80^{\circ}$. The flexural behaviour of 3D triaxial braided composite tube under bending loads was studied by conducting quasistatic three point bending test. Also, the low velocity impact responses of the braided composite tubes were also tested to obtain load-displacement curves and energy absorption. Consequently, the increase of the braided angle, the peak load also increases owing to the bigger bending stiffness.

Automotive Airbag Inflator Analysis Using Measured Properties of Modern Propellants (추진제 특성을 이용한 에어백 인플레이터 성능 제어에 대한 실험 및 해석에 대한 연구)

  • Seo, Young-Duk;Kim, Gun-Woo;Hong, Bum-Suk;Kim, Jin-Ho;Chung, Suk-Ho;Yoh, Jai-Ick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.53-62
    • /
    • 2010
  • An airbag is composed of housing assembly, door assembly, cushion assembly, and an inflator. The inflator is the essential part that generates gas for airbag. When an airbag is activated, it effectively absorbs the crash energy of the passenger by inflating a cushion. In this study, tank tests were performed with newly synthesized propellants with various compositions, and the results are compared with the numerical results. In the simulation of inflator, a zonal model has been adopted which consisted of four zones of flow regions: combustion chamber, filter, gas plenum, and discharge tank. Each zone was described by the conservation equations with specified constitutive relations for gas. The pressure and temperature of each zone of the inflator were calculated and analyzed and the results were compared with the tank test data. In the zone of discharge tank the pressure quickly rose, the pattern of pressure curve was very similar to the pressure curve of real test. And in zone 1 & 2 & 3 the mass of products was increased and decreased with time. In zone 4, the mass of products was increased with time like real inflator. From the similarity of pressure curve in zone 4 and closed bomb calculation the modeled results are well correlated with the experimental values.

Addressing Big Data solution enabled Connected Vehicle services using Hadoop (Hadoop을 이용한 스마트 자동차 서비스용 빅 데이터 솔루션 개발)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.607-612
    • /
    • 2015
  • As the amount of vehicle's diagnostics data increases, the actors in automotive ecosystem will encounter difficulties to perform a real time analysis in order to simulate or to design new services according to the data gathered from the connected cars. In this paper, we have conducted a study of a Big Data solution that expresses the essential deep analytics to process and analyze vast quantities of vehicles on board diagnostics data generated by cars. Hadoop and its ecosystems have been deployed to process a large data and delivered useful outcomes that may be used by actors in automotive ecosystem to deliver new services to car owners. As the Intelligent transport system is involved to guarantee safety, reduce rate of crash and injured in the accident due to speed, addressing big data solution based on vehicle diagnostics data is upcoming to monitor real time outcome from it and making collection of data from several connected cars, facilitating reliable processing and easier storage of data collected.

Calculation Method and Influence Factor for Speed Change of a Vehicle Impacting Small Sign Post (소형지주에 충돌하는 차량의 속도변화 산정방법과 영향인자)

  • Ko, Man-Gi;Kim, Kee-Dong;Jun, Sung-Min;Sung, Jung-Gon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Important factor in designing a breakaway sign support is the velocity change of the impact vehicle. It is measured from the crash test or can be calculated by 3-D Finite Element Analysis. It can also be calculated with relative ease utilizing energy and momentum conservation. In this paper a formula to calculate the velocity change of a car during the time of impact against a small sign is derived utilizing the energy and momentum balance. Using the formula, parametric studies were conducted to find that impact speed, separation force and Breakaway Fracture Energy(BFE) of the posts which represent the degree of fixedness to the foundation are the important factor to vehicle's speed change. It is shown that speed change is larger in the lower speed impact and to the posts with large separation force and BFE.

The Proper Length of Transition Area for Work Zones on Urban Freeways (도시고속도로 공사구간의 적정 완화구간 길이 산정)

  • Lee, Mi Ri;Lee, Chungwon;Kim, Do-Gyeong
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.4
    • /
    • pp.58-66
    • /
    • 2013
  • Due to the characteristics of urban freeways such as heavy traffic and high speed, work zone on urban freeways causes the increase of not only the likelihood of crash occurrence but also traffic congestion caused by lane drop, lane change, acceleration/deceleration, and etc. This paper aims to determine the proper length of transition area that satisfies two criteria, mobility and safety, to make the operation of work zone more efficient. For the analysis, three different scenarios were developed by the number of lanes and the proper length of transition area were determined by changing the length from 100m to 500m in 100m increments. The results showed that the proper length of transition area for 3- and 4-lane freeways is 300m, whereas the proper length of 2-lane freeways is 200m. The results indicated that the different length of transition area based on the number of lanes is more desirable and efficient.