• Title/Summary/Keyword: cracking shear strength

Search Result 197, Processing Time 0.023 seconds

An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading (단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구)

  • Ko, Tae-Young;Lee, Seung-Cheol;Kim, Dong-Keun;Choi, Young-Tae
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.307-319
    • /
    • 2011
  • Cyclic loading due to traffic, excavation and blasting causes microcrack growth in rocks over long period of time, and this type of loading often causes rock to fail at a lower stress than its monotonically determined strength. Thus, the crack growth and coalescence under cyclic loading are important for the long-term stability problems. In this research, experiments using gypsum as a model material for rock are carried out to investigate crack propagation and coalescence under monotonic and cyclic loading. Both monotonic and cyclic tests have a similar wing crack initiation position, wing crack initiation angle, cracking sequence and coalescence type. Three types of crack coalescence were observed; Type I, II and III. Type I coalescence occurs due to a shear crack and Type II coalescence occurs through one wing or tension crack. For Type III, coalescence occurs through two wing or tension cracks. Fatigue cracks appear in cyclic tests. Two types of fatigue crack initiation directions, coplanar and horizontal directions, are observed.

A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups

  • Goncalves, Wagner L.;Gomes, Guilherme F.;Mendez, Yohan D.;Almeida, Fabricio A.;Santos, Valquiria C.;Cunha, Sebastiao S.Jr.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 2018
  • Reinforced concrete structures are widely used in civil engineering projects around the world in different designs. Due to the great evolution in computational equipment and numerical methods, structural analysis has become more and more reliable, and in turn more closely approximates reality. Thus among the many numerical methods used to carry out these types of analyses, the finite element method has been highlighted as an optimized tool option, combined with the non-linear and linear analysis techniques of structures. In this paper, the behavior of reinforced concrete beams was analyzed in two different configurations: i) with welding and ii) conventionally lashed stirrups using annealed wire. The structures were subjected to normal and tangential forces up to the limit of their bending resistance capacities to observe the cracking process and growth of the concrete structure. This study was undertaken to evaluate the effectiveness of welded wire fabric as shear reinforcement in concrete prismatic beams under static loading conditions. Experimental analysis was carried out in order compare the maximum load of both configurations, the experimental load-time profile applied in the first configuration was used to reproduce the same loading conditions in the numerical simulations. Thus, comparisons between the numerical and experimental results of the welded frame beam show that the proposed model can estimate the concrete strength and failure behavior accurately.

Design of longitudinal prestress of precast decks in twin-girder continuous composite bridges (2거더 연속강합성 교량의 프리캐스트 바닥판 종방향 프리스트레스 설계)

  • Shim, Chang Su;Kim, Hyun Ho;Ha, Tae Yul;Jeon, Seung Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.633-642
    • /
    • 2006
  • Serviceability design is required to control the cracking at the joint of precast decks with longitudinal prestress in continuous composite bridges. Details of twin-girder bridges are especially complex not only due to their main reinforcements and transverse prestresses for the design of long-span concrete slabs, but also due to the shear pockets for obtaining the composite action. This paper suggests the design guidelines for the magnitude of the effective prestress and for the selection of filling materials and their requirements that would allow for the use of precast decks for twin-girder continuous composite bridges. The necessary initial prestress was also evaluated through long-term behavior analysis. From the analysis, existing design examples were revised and their effectiveness was estimated. When a filling material with a bonding strength higher than the requirement is used in the region of a high negative moment, a uniform configuration of the longitudinal prestressing steels along thewhole span length of continuous composite bridges can be achieved, which would result in the simplification of the details and the reduction of the construction costs.

Static Cyclic Loading Test of the Seismic and Energy Simultaneous Retrofit Panel for Existing Unreinforced Masonry Buildings (기존 비보강 조적조 건축물의 내진 및 에너지 동시보강패널 정적반복가력실험)

  • Choi, Hyoung-Wook;Lee, Sang-Ho;Choi, Hyoung-Suk;Kim, Tae-Hyeong;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • A textile and capillary tube composite panel(TCP) was developed to simultaneously retrofit the seismic performance and the energy efficiency (e.g. heating or insulation performance) of existing unreinforced masonry (URM) buildings. TCP is a light-weight mortar panel in which carbon textile reinforcements and capillary tubes are embedded. Textile reinforcements plays a role of seismic retrofit and capillary tubes that hot water circulates contribute to the energy retrofit. In this paper, the static cyclic loading tests were performed on the masonry walls with/without TCP to understand the seismic retrofit effect of TCP retrofit and the results were summarized. The results of the test showed that the TCP contributed to increase the capacity of the Shear strength and ductility of the URM walls. In addition, the deformation of the wall after cracking was substantially controlled by the carbon textile.

Development of Short-span Precast Concrete Panels for Railway Bridge (철도교용 단지간 프리캐스트 콘크리트패널의 개발)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Kim, Ki-Hyun;Youn, Seok-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2016
  • This paper presents experimental static test results of the precast concrete panels developed for short-span concrete bridge deck form. Different from LB-DECK, concrete rib attached to the bottom surface of concrete panel, and Top-bar is not used at the top surface of concrete panel. Number of concrete ribs and cross-section details of concrete rib are determined from the analytical results of parametric study considering the span length and the thickness of concrete bridge decks. Shear rebars are installed at the top surface of concrete panel for composite action between precast concrete panel and cast-in-place concrete. In order to evaluate the safety and the serviceability of the developed short-span concrete panel subjected to design load, static load test is conducted. Three test panels with span length of 1.6m are fabricated, and during the load test displacements, strains and cracks of test panels are measured and final failure modes are investigated. Serviceability of the test panels is evaluated based on the results of displacements, cracking load, and crack width at the design load level. Safety is also evaluated based on the comparison of the ultimate strength and the factored design load of test panels. Based on the test results, it is confirmed the short-span precast concrete panel satisfies the serviceability and safety regulated in design codes. In addition, the range of span length of concrete bridge decks for the short-span concrete panel is discussed.

An Optimization of a Walkway Block Structure for Rainwater Harvesting (빗물저장 및 활용을 위한 보도블럭구조의 최적화)

  • Cho, Taejun;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.40-47
    • /
    • 2018
  • Porous walkway blocks are constructed for the purpose already, but reserved water is easily consumed due to the bigger permeability than necessary. Furthermore, porous structure reduces the strength of blocks, which resulting cracking and settlements in walkways. In this study, we suggested a solution for given problems by determination for the location of minimum principal stress in walkway blocks against moving foot loads in order to design and verifying the determined location of minimum principal stress. An optimum design with a verification example for determined location of minimum principal stress have been presented in a two dimensional Block member on elastic foundation for pedestrian walkway for reserving water inside. The minimum value for sum of shear forces is found when ${\times}1$ is 58.58 mm(30% of total span, 200mm), while the minimum deformation is located at ${\times}2=80mm$(70% of total span, 200 mm). In a modified model, When moving boundary condition(walkway foot loads) is located at ${\times}1$(=0 mm), the location of minimum principal stresses is found at 168 mm( 84% of span, 200 mm), in which the stress concentration due to the foot load is modeled as two layers of distributed loads(reactions of foundation modeled as springs). Consequently, zero deformed reservoirs for rainwater on the neutral axis (${\times}2=167mm$) has been determined in the modified model with three dimensional FEM analysis verifications.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.