DOI QR코드

DOI QR Code

기존 비보강 조적조 건축물의 내진 및 에너지 동시보강패널 정적반복가력실험

Static Cyclic Loading Test of the Seismic and Energy Simultaneous Retrofit Panel for Existing Unreinforced Masonry Buildings

  • 최형욱 (부산대학교 일반대학원) ;
  • 이상호 (부산대학교 건설융합학부) ;
  • 최형석 (국토교통연구인프라운영원) ;
  • 김태형 (국토교통연구인프라운영원) ;
  • 백은림 (국토교통연구인프라운영원)
  • 투고 : 2020.08.03
  • 심사 : 2020.08.27
  • 발행 : 2020.08.30

초록

기존 비보강 조적벽체의 내진 성능과 에너지 효율을 동시에 보강하기 위한 TCP 보강 공법을 개발하였다. TCP는 경량 모르타르 내 격자형 탄소섬유 시트와 모세관 튜브를 매립하여 일체로 타설한 패널로 조적벽체에 부착하여 탄소섬유 시트에 의한 내진보강과 모세관 튜브에 온수를 공급함으로써난방 또는 단열 등의 에너지 보강을 동시에 달성할수 있는 보강 공법이다. 본 연구에서는 TCP의 내진 보강 효과를 파악하기 위하여 TCP 보강 유무에 따른 조적 벽체를 대상으로 정적가력실험을 실시하였다. 실험 결과, TCP 보강에 의해 최대 강도 및 변위가 약 1.4배증가하였으며, 초기 강성과 에너지 흡수능력에 효과가 있음을 보였다. 또한, 손상에 따른 조적 벽체의 변형이 제어됨에 따라 취성 파괴를 예방할수 있을 것으로 판단된다.

A textile and capillary tube composite panel(TCP) was developed to simultaneously retrofit the seismic performance and the energy efficiency (e.g. heating or insulation performance) of existing unreinforced masonry (URM) buildings. TCP is a light-weight mortar panel in which carbon textile reinforcements and capillary tubes are embedded. Textile reinforcements plays a role of seismic retrofit and capillary tubes that hot water circulates contribute to the energy retrofit. In this paper, the static cyclic loading tests were performed on the masonry walls with/without TCP to understand the seismic retrofit effect of TCP retrofit and the results were summarized. The results of the test showed that the TCP contributed to increase the capacity of the Shear strength and ductility of the URM walls. In addition, the deformation of the wall after cracking was substantially controlled by the carbon textile.

키워드

참고문헌

  1. Kouris, L.A.S., Borg, R.P., and Indirli, M. (2010), The L'Aquila Earthquake, April 6th, 2009: a review of seismic damage mechanisms, Proceeding of COST Action C26 "Urban Habitat Constructions Under Catastrophic Events", Naples, 673.
  2. Architectural Institute of Korea (2018), Site Inspection and Damage Investigation of Buildings by Earthquakes in Gyeongju and Pohang, Architectural Institute of Korea, Seoul.
  3. National Institute for Disaster Prevention (2009), Study on Seismic Retrofitting Techniques for Unreinforced Masonry Buildings, NEMA.
  4. Korea Institute of Civil Engineering and Building Technology (1997), Development of thermal insulation design and construction system of buildings, KICT, 77-94.
  5. Ministry of Land, Infrastructure and Transport Notice 2017-881(2017), Energy Saving Design Standards of Buildings, MOLIT, Korea.
  6. Bournas, D.A. (2018), Concurrent seismic and energy retrofitting of RC and masonry building envelops using inorganic textile-based composites combined with insulation material : A new concept, Composites Part B, 148(2018), 166-179. https://doi.org/10.1016/j.compositesb.2018.04.002
  7. Tetta, A.C., and Bournas, D.A., (2016), Shear strengthening of full-scale RC T-beams using textile-reinforced mortar and textile-based anchors, Composites Part B, 95(2016), 225-239. https://doi.org/10.1016/j.compositesb.2016.03.076
  8. Bournas, D.A., Lontou, P.A., Papanicolaou, C., and Triantafillou, T.C. (2007), Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns, ACI structural journal, 104(6), 740-748.
  9. Kouris, L.A.S., and Triantafillou, T.C. (2018), State-of-art on strengthening of masonry structures with textile reinforced mortar (TRM), Construction and Building Materials, 188, 12211233.
  10. Koutas, L., Bousias, S.N., and Triantafillou, T.C. (2014(a)), Seismic strengthening of masonry infilled RC frames with textile-reinforced mortar: experimental study, J. Compos. Constr., 19(2), 040148.
  11. Koutas, L., Pitytzogia, A., Triantafillou, T.C., and Bousias, S.N. (2014(b)), Strengthening of infilled reinforced concrete frames with TRM: study on the development and testing of textile-based anchors, J. Compos. Constr., 18(3), A4013015. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000390
  12. Koutas, L., and Bournas, D.A. (2019), Out-of-plan strengthening of masonry-infilled RC frames with textile-reinforced mortar jackets, J. Compos. Constr., 23(1), 04018079. https://doi.org/10.1061/(asce)cc.1943-5614.0000911
  13. Triantafillou, T.C., Karlos, K., Kefalou, K., and Argyropoulou, E. (2017), An innovative structural and energy retrofitting system for URM walls using textile reinforced mortars combined with thermal insulation : Mechanical and fire behavior, Construction and Building Materials, 133(2017), 1-13. https://doi.org/10.1016/j.conbuildmat.2016.12.032
  14. Triantafillou, T.C., Karlos, K., Kapsalis, P., and Georgiou, L. (2018), Innovative structural and energy retrofitting system for masonry walls using textile reinforced mortars combines with thermal insulation: In-plane mechanical behavior, J. Compos. Constr., 22(5), 04018029. https://doi.org/10.1061/(asce)cc.1943-5614.0000869
  15. Park, J.M., Kim, D.H., and Suh, D.J. (2012), Recent research trends for green building thermal insulation materials, Clean Technology, 18(1), 14-21. https://doi.org/10.7464/ksct.2012.18.1.014
  16. Victor, E.I. (2019), Conditioning using ceramic floor panels with capillary tube mats and solar thermal panels on the Mediterranean coast: Energy savings and investment amortisation, Energy & Buildings, 202, 109334. https://doi.org/10.1016/j.enbuild.2019.109334
  17. BINE, Buildings & City, Refubrishment. Heating via their exterior walls Available at: http://www.bine.info/en/topics/buildings-city/refurbishment/news/gebaeudeueber-aussenwand-heizen.
  18. Bagheri, B., Lee, J.H., Kim, H.G., and Oh, S.H. (2020) Experimental evaluation of the seismic performance of retrofitted masonry walls, Composite Structures, 240, 111997. https://doi.org/10.1016/j.compstruct.2020.111997