Browse > Article
http://dx.doi.org/10.7474/TUS.2011.21.4.307

An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading  

Ko, Tae-Young (SK건설)
Lee, Seung-Cheol (SK건설)
Kim, Dong-Keun (SK건설)
Choi, Young-Tae (SK건설)
Publication Information
Tunnel and Underground Space / v.21, no.4, 2011 , pp. 307-319 More about this Journal
Abstract
Cyclic loading due to traffic, excavation and blasting causes microcrack growth in rocks over long period of time, and this type of loading often causes rock to fail at a lower stress than its monotonically determined strength. Thus, the crack growth and coalescence under cyclic loading are important for the long-term stability problems. In this research, experiments using gypsum as a model material for rock are carried out to investigate crack propagation and coalescence under monotonic and cyclic loading. Both monotonic and cyclic tests have a similar wing crack initiation position, wing crack initiation angle, cracking sequence and coalescence type. Three types of crack coalescence were observed; Type I, II and III. Type I coalescence occurs due to a shear crack and Type II coalescence occurs through one wing or tension crack. For Type III, coalescence occurs through two wing or tension cracks. Fatigue cracks appear in cyclic tests. Two types of fatigue crack initiation directions, coplanar and horizontal directions, are observed.
Keywords
Crack growth; Crack coalescence; Monotonic loading; Cyclic loading; Wing crack; Secondary crack; Fatigue crack;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lajtai, E.Z., 1974, Brittle fracture in compression, Int. J. of Fract. Vol. 10, No. 4, 525-536.   DOI   ScienceOn
2 Lee, H., and S. Jeon, 2010, An experimental study of crack coalescence in pre-cracked specimens under uniaxial compression, Proc. 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, Salt Lake City, Utah, Paper No. 10-369.
3 Li, N., W. Chen, P. Zhang, and G. Swoboda, 2001, The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading, Int. J. Rock Mech. Min. Sci., Vol. 38, No.7, 1071-1079.   DOI   ScienceOn
4 Palinaswamy, K. and W. G. Knauss, 1972, Propagation of a crack under general, in-plane tension, Int. J. Frac. Mech., Vol. 8, 114-117.   DOI   ScienceOn
5 Ingraffea, A.R. and F.E. Heuze, 1980, Finite element models for rock fracture mechanics. Int. J. Num. Anal. Meth. Geom. Vol. 4, 25-43.   DOI   ScienceOn
6 Jafari, M. K., K. A. Hosseini, and F. Pellet, 2003, Evaluation of shear strength of rock joints subjected to cyclic loading, Soil Dya. Ear. Eng. Vol. 23, 619-630.   DOI   ScienceOn
7 Hardy, H. R. and Y. P. Chugh, 1970, Failure of geologic materials under low cycle fatigue, Proc. Sixth Canadian Symposium on Rock Mechanics, Montreal, 33-47.
8 Ko, T.Y., H. H. Einstein, J. Kemeny, 2006, Crack coalescence in brittle material under cyclic loading, Proc. 41st U.S. Symposium on Rock Mechanics, Golden, CO, Paper No. 06-930.
9 Ko T.Y., 2005, Crack coalescence in rock-like material under cyclic loading, Civ. E. Thesis, Massachusetts Institute of Technology.
10 Haimson, B. C. and C. M. Kim, 1971, Mechanical behaviour of rock under cyclic fatigue, Proc. 13th Synposium on Rock Mechanics, New York:ASCE, 845-863.
11 Hussain, M. A., S. L. Pu, and J. Underwood, 1974, Strain energy release rate for a crack under combined mode I and mode II, Fracture Analysis, ASTM STP 560, 2-28.
12 Bobet, A. and H. H. Einstein, 1988, Fracture coalescence in rock-type materials under uniaxial and biaxial compression, Int. J. Rock Mech. Min. Sci. Vol. 35, No. 7, 863-888.
13 Burdine, N.T., 1963, Rock failure under dynamic loading conditions, Soc. Petr. Eng. J. Vol. 3, 1-8.   DOI
14 Chen, G., J. M. Kemeny, and S. Harpalani, 1995, Fracture propagation and coalescence in marble plates with pre-cut notches under compression, Proc. Symposium on Fractured and Jointed Rock Mass, Lake Tahoe, CA, 435-439.
15 천대성 박찬, 정용복, 박철환, 송원경, 2011, 반복하중에 의한 암석과 콘크리트의 물성변화, 한국암반공학회 춘계학술발표회 논문집, 52-57.
16 Costin, L.S. and D. J. Holcomb, 1981, Time-dependent failure of rock under cyclic loading. Tectonophysics Vol .79, 279-296.   DOI   ScienceOn
17 Erdogan, F. and G. C. Sih, 1963, On the crack extension in plates under loading and transverse shear, J. Basic Eng., Vol. 85, 519-527.   DOI
18 박남수, 전석원, 2001, 단축압축 하에서 대리석의 균열전파 및 결합, 한국암반공학회지, 제11권 3호, 217-224.
19 Bobet, A., 1997, Fracture coalescence in rock-type material: experimental observations and numerical predictions, Sc.D Thesis, M.I.T.
20 Attewell, P.B. and I. W. Farmer, 1973, Fatigue behaviour of rock. Int. J. Rock. Mech. Min. Sci. Vol. 10, 1-9.   DOI
21 Sagong, M., 2001, The study on the fracture of multiple flaw specimenms, Ph. D. Dissertation, Purdue University.
22 Sih, G. C., 1973, Mechanics of fracture, Noordhoff International Pub.
23 Wong, R. H. C., and K. T. Chau, 1998, Crack coalescence in a rock-like material containing two cracks, Int. J. Rock Mech. Min. Sci., Vol. 35, No. 2, 147-164.   DOI   ScienceOn
24 Zhenyu, T. and M. Haihong, 1990, An experimental study and analysis of the behaviour of rock under cyclic loading, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol. 27, No. 1, 51-56.
25 Prost, C. L., 1988, Jointing at rock contacts in cyclic Loading, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol.25, No. 5, 263-272.   DOI   ScienceOn
26 Pruitt, L. and S. Suresh, 1993, Cyclic stress fields for fatigue cracks in amorphous solids- experimental measurements and their implications, Philosophical Magazine, A 67, 1219-1245.
27 Reyes, O. and H.H. Einstein, 1991, Failure mechanism of fractured rock - a fracture coalescence model, Proc. 7th International Congress of Rock Mechanics, Vol. 1, 333-340.
28 Sagong, M. and A. Bobet, 2002, Coalescence of multiple flaws in a rock-model material in uniaxial compression, Int. J. Rock Mech. Min. Sci. Vol. 39, 229-241.   DOI   ScienceOn
29 Shen, B., O. Stephansson, H. H. Einstein, and B. Ghahreman, 1995, Coalescence of fracture under shear stresses in experiments, J. Geophys. Res. Vol. 100, B4, 5975-5990.   DOI