• 제목/요약/키워드: crack of concrete

검색결과 2,414건 처리시간 0.028초

대형 기초 콘크리트의 분할타설 방법을 고려한 수화열에 의한 온도균열 제어 대책 (Thermal Crack Control Using Optimized Steps of Concrete Placement in Massive Concrete Foundation)

  • 김동규;조선규;김은겸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1169-1174
    • /
    • 2000
  • Since the cement-water reaction in exothermic by nature, the temperature rise within a large concrete mass. Significant tensile stresses may develop from the volume change associated with the increase and decrease of the temperature with the mass concrete. There thermal stresses will cause temperature-related cracking in mass concrete structure. These typical type of mass concrete include mat foundation, bridge piers, thick wall, box type walls, tunnel linings, etc. Crack control methods can be considered at such stages as designing, selecting the materials, and detailing the construction method. Temperature and analysis was performed by taking into consideration of the cement type and content, boundary and environment conditions including the variations of atmospheric temperature and wind velocity. This is paper, the effect of separate placement of thermal crack control footing was analysed by a three dimensional finite element method. As a result, using this method, thermal crack control can be easily performed for structures such as mat structures.

  • PDF

강섬유 보강 초고성능 콘크리트의 전단 전달 모델 (Shear Transfer Strength Evaluation for Ultra-High Performance Fiber Reinforced Concrete)

  • 이지형;홍성걸
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.69-77
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) has a outstanding tensile hardening behaviour after a crack develops, which gives ductility to structures. Existing shear strength model for fiber reinforced concrete is entirely based on crack opening behavior(mode I) which comes from flexural-shear failure, not considering shear-slip behavior(mode II). To find out the mode I and mode II behavior on a crack in UHPFRC simultaneously, maximum shear strength of cracked UHPFRC is investigated from twenty-four push-off test results. The shear stress on a crack is derived as variable of initial crack width and fiber volume ratio. Test results show that shear slippage is proportional to crack opening, which leads to relationship between shear transfer strength and crack width. Based on the test results a hypothesis is proposed for the physical mechanics of shear transfer in UHPFRC by tensile hardening behavior in stead of aggregate interlocking in reinforced concrete. Shear transfer strength based on tensile hardening behavior in UHPFRC is suggested and this suggestion was verified by comparing direct tensile test results and push-off test results.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

콘크리트의 균열발생 거동에 관한 실험적 연구 (An Experimental Study on the Crack Pattern of Concrete by Corrosion of Steel Reinforcing)

  • 백민수;김연경;이영도;임남기;최응규;김영희;정란;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.235-240
    • /
    • 1997
  • The purpose of this experiment is to verify processing crack direction and state by the corrosion of electrifying re-bar in the salt water. The result of this experiment is the fact that the first crack appear on the surface of water-because of supplying of oxygen and water. The crack processing is on a surface to be contacted by air and to bottom as mainly the vertical direction from a surface of water. The crack by corrosion of steel reinforcing is emerged by the inside of concrete rather than surface concrete.

  • PDF

칼슘계 경화촉진제를 사용한 프리캐스트 콘크리트의 수축특성에 관한 연구 (A study on the Shrinkage Properties of precast concrete using Calcium hardening accelerator)

  • 민태범;조인성;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.44-45
    • /
    • 2014
  • On this study, initial crack index was evaluated by performing FEM analysis to crack propagation from hydration heat for development of precast concrete. On the result, as increased the usage of hardening accelerator, initial compressive strength were improved and setting time also was shortened. Additionally, central temperature of concrete was increased, the reaching time for the highest temperature could be shortened. By the result to assess crack index, there was no problem about crack despite of growth of initial high hydration heating. This result guessed because of small size element when analyzed trough FEM, realization for mass concrete's crack index should be performed.

  • PDF

부분 프리스트레스트 콘크리트 슬래브의 휨 균열 거동에 관한 실험적 연구 (An Experimental Study on the Flexural Cracking Behavior of Partially Prestressed Concrete Slabs)

  • 박홍용;연준희;최익창
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.108-115
    • /
    • 1990
  • This paper contains experimental studies on the flexural cracking behabior of PPC one-way slabs. Three post tensioned bonded PPC slabs with the same prestressing ratio and ultimate moment strength were tested. Based upon test results, this paper also presents the crack width prediction formula PPC slab. According to the crack theory developed mainly in Europe, crack width formula is given as the product of crack spacing and mean steel strain after decompression. Aaaaverage crack spacing formula is composed of many factors mainly such as concrete cover, concrete effective area in tension, sum of reinforcing bars perimeters and mixed reinforcements. In particular, it is very important to specify the bond characteristics of mixed reinforcements, since bond characteristics of PC bars are different from those of non-tensioned deformed bars. For this reason, a reduced bond coefficients for PS bars is employed in this study.

  • PDF

Crack Opening Behavior of Concrete Reinforced with High Strength Reinforcing Steel

  • Soltani, Amir;Harries, Kent A.;Shahrooz, Bahram M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.253-264
    • /
    • 2013
  • A major difference between high-strength reinforcing steel and conventional steel in concrete is that the service-load steel stress is expected to be greater. Consequently, the service-load steel strains are greater affecting cracking behavior. A parametric study investigating crack widths and patterns in reinforced concrete prisms is presented in order to establish limits to the service-load steel stress and strain. Additionally, based on the results of available flexural tests, crack widths at service load levels were evaluated and found to be within presently accepted limits for highway bridge structures, and were predictable using current AASHTO provisions. A limitation on service-level stresses of $f_s{\leq}414$ MPa (60 ksi) is nonetheless recommended.

모르터와 콘크리트의 균열검출을 위한 음향방출기법의 적용 (Application of Acoustic Emission Technique for Detection of Crack in Mortar and Concrete)

  • 진치섭;신동익;장종철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.739-744
    • /
    • 2000
  • Concrete structures generally have cracks, so for the safety and durability of structures, studies to detect cracks using nondestructive tests have been treated in great deal. In order to assure the reliability of concrete structure, microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. The purpose of this study predicts location of initial crack and measures direction of crack propagation for on-line monitoring before the crack really grows in structures by using two-dimensional Acoustic Emission(AE) source location based on rectangular method with three-point bending test. This will allow efficient maintenance of concrete structure through monitoring of internal cracking based on AE method.

  • PDF

Experimental and numerical study of shear crack propagation in concrete specimens

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.57-63
    • /
    • 2017
  • A coupled experimental-numerical study on shear fracture in concrete specimens with different geometries is carried out. The crack initiation, propagation and final breakage of concrete specimens are experimentally studied under compression loading. The load-strain and the strength of the specimens are experimentally measured, indicating decreasing effects of the shear behavior on the failure load of the specimen. The effects of specimen geometries on the shear fracturing path in the concrete specimens are also investigate. Numerical models using an indirect boundary element method are made to evaluate the crack propagation paths of concrete specimens. These numerical results are compared with the performed experiments and are validated experimentally.

Validation of 3D crack propagation in plain concrete -Part II: Computational modeling and predictions of the PCT3D test

  • Gasser, T.Christian
    • Computers and Concrete
    • /
    • 제4권1호
    • /
    • pp.67-82
    • /
    • 2007
  • The discrete crack-concept is applied to study the 3D propagation of tensile-dominated failure in plain concrete. To this end the Partition of Unity Finite Element Method (PUFEM) is utilized and the strong discontinuity approach is followed. A consistent linearized implementation of the PUFEM is combined with a predictor-corrector algorithm to track the crack path, which leads to a robust numerical description of concrete cracking. The proposed concept is applied to study concrete failure during the PCT3D test and the predicted numerical results are compared to experimental data. The proposed numerical concept provides a clear interface for constitutive models and allows an investigation of their impact on concrete cracking under 3D conditions, which is of significant scientific interests to interpret results from 3D experiments.