DOI QR코드

DOI QR Code

Experimental and numerical study of shear crack propagation in concrete specimens

  • Haeri, Hadi (Young Researchers and Elite Club, Bafgh Branch, Islamic Azad University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Shemirani, Alireza Bagher (Department of Civil Engineering, SADRA Institute of Higher Education)
  • Received : 2017.01.15
  • Accepted : 2017.05.21
  • Published : 2017.07.25

Abstract

A coupled experimental-numerical study on shear fracture in concrete specimens with different geometries is carried out. The crack initiation, propagation and final breakage of concrete specimens are experimentally studied under compression loading. The load-strain and the strength of the specimens are experimentally measured, indicating decreasing effects of the shear behavior on the failure load of the specimen. The effects of specimen geometries on the shear fracturing path in the concrete specimens are also investigate. Numerical models using an indirect boundary element method are made to evaluate the crack propagation paths of concrete specimens. These numerical results are compared with the performed experiments and are validated experimentally.

Keywords

References

  1. ACI Committee 544 (2008), Report on Fiber Reinforced Concrete.
  2. Aliabadi, M.H. (1998), Fracture of Rocks, Computational Mechanics Publications, Southampton, U.K.
  3. ASTM International C 1018-97 (2002), Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), 4(2), 546-553.
  4. Ayatollahi, M.R. and Aliha, M.R. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75(16), 4631-4641. https://doi.org/10.1016/j.engfracmech.2008.06.018
  5. Ayatollahi, M.R. and Sistaninia, M. (2011), "Mode II fracture study of rocks using Brazilian disk specimens", J. Rock Mech. Min. Sci., 48(5), 819-826. https://doi.org/10.1016/j.ijrmms.2011.04.017
  6. Barragan, B., Gettu, R., Agullo, L. and Zerbino, R. (2006), "Shear failure of steel fiber-reinforced concrete based on push-off tests", ACI Mater. J., 103(4), 251-257.
  7. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(3), 155-177.
  8. Chen, J.T. and Hong, H.K. (1999), "Review of dual boundary element methods with emphasis on hyper singular integrals and divergent series", Appl. Mech. Rev., 52, 17-33. https://doi.org/10.1115/1.3098922
  9. Chuang, T. and Mai, Y.W. (1998), "Flexural behavior of strainsoftening solids", J. Sol. Struct., 25, 1427-1443.
  10. Crouch, S.L. (1967a), Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, University of Minnesota Geomechanics Report, Minneapolis, Minnesota, U.S.A.
  11. Crouch, S.L. and Starfield, A.M. (1983), Boundary Element Methods in Solid Mechanics, Allen and Unwin, London, U.K.
  12. Dai, F., Chen, R., Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", J. Rock Mech. Min. Sci., 47(4), 606-613. https://doi.org/10.1016/j.ijrmms.2010.04.002
  13. Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech., 78(15), 2633-2644. https://doi.org/10.1016/j.engfracmech.2011.06.022
  14. Deokar, A.A.V. and Wakchaure, B.V.D. (2011), Experimental Investigation of Crack Detection in Cantilever Beam Using Natural Frequency as Basic Criterion, Institute of technology, Nirma University, Ahmedabad, India.
  15. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under loading and transverse shear", J. Basic Eng., 85(4), 519-527. https://doi.org/10.1115/1.3656897
  16. Fortino, S. and Bilotta, A. (2004), "Evaluation of the amount of crack growth in 2D LEFM problems", Eng. Fract. Mech., 71(9), 1403-1419. https://doi.org/10.1016/S0013-7944(03)00161-9
  17. Gehle, C.K. and Kutter, H. (2003), "Breakage and shear behavior of intermittent rock joints", J. Rock Mech. Min. Sci., 40, 687-700 . https://doi.org/10.1016/S1365-1609(03)00060-1
  18. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  19. Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  20. Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. https://doi.org/10.12989/cac.2016.17.1.107
  21. Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  22. Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18(2), 201-214 . https://doi.org/10.12989/cac.2016.18.2.201
  23. Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  24. Hillerborg, A. (1980), "Analysis of fracture by means of the fictitious crack model, particularly for fiber reinforced concrete", J. Cement Compos., 2(4), 177-190.
  25. Hong, H.K. and Chen, J.T. (1988b), "Derivation of integral equations of elasticity", J. Eng. Mech., 114(6), 1028-1044. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:6(1028)
  26. Irwin, G.R. (1957), "Analysis of stress and strains near the end of a crack", J. Appl. Mech., 24(3), 361-364.
  27. Jenq, Y.S. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech., 111(10), 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
  28. Kaplan, M.F. (1961), "Crack propagation and the fracture of concrete", ACI J., 58(11), 591-610.
  29. Marji, M.F., Hosseini-nasab, H. and Hossein-morshedy, A. (2009), "Numerical modeling of the mechanism of crack propagation in rocks under TBM disc cutters", J. Mech. Mater. Struct., 2, 439-457.
  30. Marji, M.F., Hosseini-nasab, H. and Kohsar, A.H. (2006), "On the uses of special crack tip elements in numerical rock fracture mechanics", J. Sol. Struct., 43(1), 669-1692.
  31. Marji, M.F., Hosseini-nasab, H. and Kohsary, A.H. (2007), "A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis", J. Sol. Struct., 43, 61-91.
  32. Mirsayah, A. and Banthia, N. (2002), "Shear strength of steel fiber-reinforced concrete", ACI Mater. J., 99(5), 473-479.
  33. Munikrishna, A. (2008), "Shear behavior of concrete beams reinforced with high performance steel shear reinforcement", M.S. Dissertation, North Carolina State University, U.S.A.
  34. Nilson, A.H., Darwin, D. and Dolan, C.W. (2004), Design of Concrete Structures, 13th Edition, McGraw Hill, New York, U.S.A.
  35. Ning, J., Liu, X., Tan, Y., Wang, J. and Tian, C. (2015), "Relationship of box counting of fractured rock mass with hoek-brown parameters using particle flow simulation", Geomech. Eng., 9(5), 619-629. https://doi.org/10.12989/gae.2015.9.5.619
  36. Ozcebe, G. (2011), "Minimum flexural reinforcement for T-beams made of higher strength concrete", Can. J. Civil Eng., 26(5), 525-534. https://doi.org/10.1139/l99-013
  37. Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., 9(6), 793-813. https://doi.org/10.12989/gae.2015.9.6.793
  38. Ruiz, G. and Carmona, R.J. (2006a), "Experimental study on the influence of the shape of the cross-section and the rebar arrangement on the fracture of LRC beams", Mater. Struct., 39(3), 343-352. https://doi.org/10.1007/s11527-005-9006-7
  39. Ruiz, G., Carmona, J.R. and Cendon, D.A. (2006b), "Propagation of a cohesive crack through adherent reinforcement layers", Comput. Meth. Appl. Mech. Eng., 195(52), 7237-7248. https://doi.org/10.1016/j.cma.2005.01.029
  40. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  41. Sarfarazi, V. and Haeri, H. (2016a), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  42. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/ACC.2015.3.4.269
  43. Savilahti, T., Nordlund, E. and Stephansson, O. (1990), "Shear box testing and modeling of joint bridge", Proceedings of the International Symposium on Shear Box Testing and Modeling of Joint Bridge Rock Joints, Norway.
  44. Shou, K.J. and Crouch, S.L.A. (1995), "Higher order displacement discontinuity method for analysis of crack problems", J. Rock Mech. Min. Sci. Geomech. Abstr., 32(1), 49-55. https://doi.org/10.1016/0148-9062(94)00016-V
  45. Sun, S. and Kuchma, D.A. (2007), Shear Behavior and Capacity of Large-Scale Prestressed High-Strength Concrete Bulb-Tee Girders, NSEL Report Series Report No. NSEL-002.
  46. Tang, H.D. (2015), Mechanical Behavior of 3D Crack Growth in Transparent Rock-Like Material Containing Preexisting Flaws under Compression, 1-10.
  47. Wang, Q.Z. (2010), "Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens", J. Rock Mech. Min. Sci., 47(6), 1006-1011. https://doi.org/10.1016/j.ijrmms.2010.05.005
  48. Weihua, Z., Runqiu, H. and Ming, Y. (2015), "Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation", Geomech. Eng., 8(6), 757-767. https://doi.org/10.12989/gae.2015.8.6.757
  49. Wong, R.H.C., Leung, W.L. and Wang, S.W. (2001), Shear Strength Study on Rock-Like Models Containing Arrayed Open Joints, Swets & ZeitlingerLisse, Leiden, 843-849.
  50. Wu, Z.M., Yang, S.T., Hu, X.Z. and Zheng, J.J. (2006), "An analytical model to predict the effective fracture toughness of concrete for three-point bending notched beams", Eng. Fract. Mech., 73(15), 2166-2191. https://doi.org/10.1016/j.engfracmech.2006.04.001
  51. Xiang, F., Kulailake, P.H.S.W., Xin, C. and Ping, C. (2015), "Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach", J. Centr. South Univ., 22(2), 638-645. https://doi.org/10.1007/s11771-015-2565-z
  52. Xu, S.L. and Reinhardt, H.W. (2000), "A simplified method for determining double-K fracture parameters for three-point bending tests", J. Fract., 104(2), 181-209. https://doi.org/10.1023/A:1007676716549
  53. Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541
  54. Yang, S.T., Hu, X.Z. and Wu, Z.M. (2011), "Influence of local fracture energy distribution on maximum fracture load of threepoint-bending notched concrete beams", Eng. Fract. Mech., 78(18), 3289-3299. https://doi.org/10.1016/j.engfracmech.2011.09.019
  55. Zhang, X. and Wong, L.N.Y. (2012), "Cracking process in rocklike material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
  56. Zhang, X. and Wong, R.H.C. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1
  57. Zhao, C. (2015), "Analytical solutions for crack initiation on floorstrata interface during mining", Geomech. Eng., 8(2), 237-255. https://doi.org/10.12989/gae.2015.8.2.237