• Title/Summary/Keyword: crack mapping

Search Result 49, Processing Time 0.023 seconds

Analysis of an Inclined Crack in Finite Composite Plate Under Mixed Mode Deformation (혼합모우드 변형하에 있는 복합재료 유한평판의 경사진 균열해석)

  • 염영진;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.625-635
    • /
    • 1989
  • Mixed mode fracture problem is analyzed for the finite orthotropic plate where an inclined crack parallel to the fiber direction is centrally placed. Modified mapping collocation method with both uniform stress and uniform displacement boundary conditions is utilized to calculate stress intensity correction factors for glass/epoxy and graphite/epoxy composites. Computed results are presented for selected combinations of crack length to width ratio L/W and plate aspect ratio H/W with various fiber orientations.

Large Crack Model and Its Numerical Algorithm for Damage Analysis of Dynamically Loaded Structures (동하중을 받는 구조물의 손상해석을 위한 대형균열모형과 수치 알고리즘)

  • Lee, Jee-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.59-65
    • /
    • 2005
  • In this paper a constitutive model for large cracks in concrete and other brittle materials subject to dynamic and cyclic leading is presented. The suggested model is based on the plastic-damage model for cyclic leading. A numerical formulation based on the three-step return-mapping algorithm for the proposed large crack model is also present. The numerical examples show that the present algorithm works appropriately under dynamic leading and should be used in large crack problems to prevent excessive tensive plastic strain development causing unrealistic results.

Automatic Crack Detection on Pressed Panels Using Camera Image Processing with Local Amplitude Mapping (카메라 이미지 처리를 통한 프레스 패널의 크랙결함 검출)

  • Lee, Chang Won;Jung, Hwee Kwon;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.451-459
    • /
    • 2016
  • Crack detection on panels during manufacturing process is an important step for ensuring the product quality. The accuracy and efficiency of traditional crack detection methods, which are performed by eye inspection, are dependent on human inspectors. Therefore, implementation of an on-line and precise crack detection is required during the panel pressing process. In this paper, a regular CCTV camera system is utilized to obtain images of panel products and an image process based crack detection technique is developed. This technique uses a comparison between the base image and a test image using an amplitude mapping of the local image. Experiments are performed in the laboratory and in the actual manufacturing lines to evaluate the performance of the developed technique. Experimental results indicate that the proposed technique could be used to effectively detect a crack on panels with high speed.

Stress intensity factor and stress distribution near crack tip for infinite body containing regid inclusion with crack shape (균열형상의 강체함유물을 포함하는 무한체에 대한 균열선단 부근의 응력분포와 응력세기계수)

  • Lee, Kang-Young;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.680-683
    • /
    • 1998
  • In case of the infinite body containing a rigid inclusion with line crack shape, stress intensity factor is determined and the relation between stress intensity factor and stress distribution near a crack tip is developed. Also, the relation between stress intensity factor and Kolosoff stress function is developed. Finally, these results are compared with those that the crack surface is under no traction.

Internal Stress/Strain Analysis during Fatigue Crack Growth Retardation Using Neutron Diffraction (피로 균열 성장 지연에 대한 중성자 회절 응력 분석)

  • Seo, Sukho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.398-404
    • /
    • 2018
  • Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction

  • Choi, Gyudong;Lee, Min-Ho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.690-693
    • /
    • 2015
  • Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.

Determination of thermal Stress Intensity Factors for General Cusp-Crack Shaped Rigid Inclusion (일반 형상의 커프스형 강체균열에 대한 열응력세기계수 결정)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1216-1220
    • /
    • 1992
  • In case that a general cusp-crack shaped inclusion expressed in a polynominal form of conformal mapping function exists in a two dimensional elastic body under uniform heat flow, the complex potential and thermal stress intensity factors are derived. Two thermal boundary conditions are considered, one an insulated rigid inclusion and the other a rigid inclusion with fixed boundary temperature. The previous solutions of the thermal stress intensity factors for symmetrical airfoil and lip type rigid inclusions are obtained from the general solution of the thermal stress intensity factors.

A study on fatigue crack growth modelling by back propagation neural networks (역전파 신경회로망을 이용한 피로 균열성장 모델링에 관한 연구)

  • 주원식;조석수
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Up to now, the existing crack growth modelling has used a mathematical approximation but an assumed function have a great influence on this method. Especially, crack growth behavior that shows very strong nonlinearity needed complicated function which has difficulty in setting parameter of it. The main characteristics of neural network modelling to engineering field are simple calculations and absence of assumed function. In this paper, after discussing learning and generalization of neural networks, we performed crack growth modelling on the basis of above learning algorithms. J'-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

  • PDF

Indexing Sectioned BIM Models for Mapping Crack with BIM 3D Model

  • Young-Soo Kim;Gyeong Chan Mun;Janghwan Kim;Sam-Hyun Chun;R. Young Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.140-147
    • /
    • 2024
  • In Current artificial structures, we must periodically make their safety inspections. In this process, we should consider the safety of workers and the accuracy of safety checks and also consider time and cost savings for safety inspections. Additionally, in the fields of architecture and civil engineering, we are unavoidable the use of foreign commercialized BIM model tools. To address these challenges, we propose mapping crack areas and BIM 3D design drawings based on augmented reality (AR) for the safety inspection of Huge Bridges. For this purpose, we define indexing of 2D/3D drawing models, create the tabulation of all 2D/3D drawings into a database, analyze QR codes, and finally integrate with augmented reality devices. we may expect our method to improve the efficiency of safety inspections on bridge sites. Moreover, we will enable the domestics of our pure technology.

Three-Dimensional Virtual Crack Closure Technique Based on Anisoparametric Model for Stress Intensity Factors of Patch Repaired Plates with Cracks at Notches (접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.39-48
    • /
    • 2012
  • This study deals with numerical determination of stress intensity factors of adhesively patch-repaired plates with cracks at V-shaped or semicircular notches. The p-convergent anisoparametric model are considered and then three-dimensional virtual crack closure technique is presented using formulations of anisoparametric elements. In assumed displacement fields of an element, strain-displacement relations and three-dimensional constitutive equations are derived with three-dimensional hierarchical shape functions expanded from one-dimensional Lobatto functions. Transfinite mapping technique is used to represent a circular boundary. The present model provides accuracy and simplicity in terms of stress concentration factor, stress distribution, the number of degrees of freedom, and non-dimensional stress intensity factor as compared with previous works in literatures. Stress intensity factors obtained by the three-dimensional virtual crack closure technique are estimated with respect to the variation of width of finite plate, radius of notch root, angular inclination of V-shaped notch, and crack length.