Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.12.690

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction  

Choi, Gyudong (Department of Materials Science and Engineering, Chungnam National University)
Lee, Min-Ho (Department of Materials Science and Engineering, Chungnam National University)
Huang, E-Wen (Department of Materials Science and Engineering, National Chiao Tung University)
Woo, Wanchuck (Neutron Science Division, Korea Atomic Energy Research Institute)
Lee, Soo Yeol (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.25, no.12, 2015 , pp. 690-693 More about this Journal
Abstract
Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.
Keywords
fatigue; crack growth; stress field; stainless steel; neutron diffraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, New York (1998).
2 P. J. Withers, Rep. Prog. Phys., 70, 2211 (2007).   DOI
3 J. D. Almer, J. B. Cohen and R. A. Winholtz, Metall. Mater. Trans. A, 29, 2127 (1998).   DOI
4 J. E. Allison, Fracture mechanics, STP 677, Philadelphia, PA: ASTM, 550 (1979).
5 M. N. James, D. G. Hattingh, D. J. Hughes, L. W. Wei, E. A. Patterson and J. Q. Da Fonseca, Fatigue Fract. Eng. Mater. Struct., 27, 609 (2004).   DOI
6 M. C. Croft, N. M. Jisrawi, Z. Zhong, R. L. Holtz, K. Sadananda, J. R. Skaritka and T. Tsakalakos, Int. J. Fatigue, 29, 1726 (2007).   DOI
7 A. Steuwer, M. Rahman, A. Shterenlikht, M. E. Fitzpatrick, L. Edwards and P. J. Withers, Acta Mater., 58, 4039 (2010).   DOI
8 A. J. Allen, M. T. Hutchings, C. G. Windsor and C. Andreani, Adv. Phys., 34, 445 (1985).   DOI
9 M. T. Hutchings, C. A. Hippsley and V. Rainey, Mater. Res. Soc. Sympos. Proc., 166, 317 (1990).
10 S. Y. Lee, R. I. Barabash, J. S. Chung, P. K. Liaw, H. Choo, Y. Sun, C. Fan, L. Li, D. W. Brown and G. E. Ice, Metall. Mater. Trans. A, 39, 3164 (2008).   DOI
11 S. Y. Lee, H. Choo, P. K. Liaw, E. C. Oliver and A. M. Paradowska, Scripta Mater., 60, 866 (2009).   DOI
12 S. Y. Lee, P. K. Liaw, H. Choo and R. B. Rogge, Acta Mater., 59, 485 (2011).   DOI
13 S. Y. Lee, H. Choo, P. K. Liaw, K. An and C. R. Hubbard, Acta Mater., 59, 495 (2011).   DOI
14 S. Y. Lee, E. W. Huang, W. Wu, P. K. Liaw and A. M. Paradowska, Mater. Charact., 79, 7 (2013).   DOI