• Title/Summary/Keyword: covalent

Search Result 368, Processing Time 0.029 seconds

Theoretical Mechanism Studies on the Enantioselectivity of aza-MBH-type Reaction of Nitroalkene to N-tosylimine Catalyzed by Thiourea-tertiary Amine

  • Lu, Nan;Wang, Huatian;Wang, Yangping
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3591-3596
    • /
    • 2013
  • The enantioselective aza-Morita Baylis Hillman reaction of nitroalkene and N-tosylimine catalyzed by thiourea-tertiary amine has been investigated using density functional theory. Enantioselectivity is dominated by the cooperative effect of non-covalent and weak covalent interactions imposed by different units of catalyst. As Lewis base, the tertiary amine unit activates nitroalkene via weak covalent bond. The weak covalent interaction orients the reaction in a major path with smaller variations of this bond. The aromatic ring unit activates N-tosylimine via ${\pi}-{\pi}$ stacking. The non-covalent interaction selects the major path with smaller changes of the efficient packing areas. Thiourea unit donates more compact H-bonded network for species of the major path. The calculated ee value in xylene solution phase (97.6%) is much higher than that in N,N-Dimethylformamide (27.2%). Our conclusion is also supported by NBO analysis.

In vitro Ccovalent Binding of SC-42867, PGE2 Antagonist, to Rat Liver Microsomal Proteins

  • Lee, Kyung-Tae
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.381-384
    • /
    • 1995
  • Covalent binding of the reactive metabolites of SC_42867 to microsomal proteins has been examined. In the absence of inhibitor of cytochrome oxydase (.alpha.-naphtyl-isothiocyanate) or a radical scavenger (3-terthiobuty-4-hydroxyanisol), up to 4.0% of total redioactivity used in the assay could irreversibly bind to proteins. In the presence of an inhibitor, the highest percentage of covalent binding observed is 0.7% a significant decrease of the metabolism of SC42876 was observed. These results suggest in a cytochrome P-450 dependent generation of SC_42867 metabolites significantly take part in the covalent binding process.

  • PDF

2D-Covalent organic frameworks for bioimaging and therapeutic applications

  • Chanho Park;Dong Wook Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.171-176
    • /
    • 2020
  • Covalent organic frameworks (COFs) are porous crystalline polymers in which organic units are linked by covalent bonds and have a regular arrangement at the atomic level. Recently, the COFs have been much attention in bio-medical area such as bio-imaging, drug delivery, and therapeutics. These 2D nanoparticles are proving their value in nanomedicine due to their large surface area, functionalization through functional groups exposed on the surface, chemical stability due to covalent bonding, and high biocompatibility. The high ω-electron density and crystallinity of COFs makes it a promising candidate for bioimaging probes, and its porosity and large surface area make it possible to be utilized as a drug delivery vehicle. However, the low dispersibility in water, the cytotoxicity problems of COFs are still challenged to be solved in the future. In this regard, several efforts that increase the degree of dispersion through functionalization on the surface of COFs for the application to the biomedical field have been reported. In this review, we would like to describe the advantages and limitations of COFs for bio-imaging and anti-cancer treatment.

A Simple Approach to the Ionic-covalent Bond Based on the Electronegativity and Acid Strength of Cations. Part Two:Application to the Description of the Electronic Properties of Oxides

  • Josik Portier;Guy Campet
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.437-441
    • /
    • 1997
  • The acid strngth of cations, determined with ICP (Ionic Covalent Parameter): ICP=log(P)-1.38x+2.07 where P is the polarizing power and X its electronegativity expresses the competition between the covalent and ionic forces. This concept, together with electronegativity, is used to describe the properties of oxides with various electronic properties (insulators, metals, degenerate semiconductors, superconductors).

  • PDF

Approaches to Reduce the Contact Resistance by the Formation of Covalent Contacts in Graphene Thin Film Transistors

  • Na, Youngeun;Han, Jaehyun;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.55-61
    • /
    • 2017
  • Graphene, with a carrier mobility achieving up to $140,000cm^2/Vs$ at room temperature, makes it an ideal material for application in semiconductor devices. However, when the metal comes in contact with the graphene sheet, an energy barrier forms at the metal-graphene interface, resulting in a drastic reduction of the carrier mobility of graphene. In this review, the various methods of forming metal-graphene covalent contacts to lower the contact resistance are discussed. Furthermore, the graphene sheet in the area of metal contact can be cut in certain patterns, also discussed in this review, which provides a more efficient approach to forming covalent contacts, ultimately reducing the contact resistance for the realization of high-performance graphene devices.

Recent Advances in Covalent Triazine Framework based Separation Membranes (공유결합 트리아진 구조체 기반 분리막의 최근 발전)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.184-199
    • /
    • 2021
  • As a branch of covalent organic frameworks (COF), covalent triazine frameworks (CTF) are inherently porous structures composed of networks of repeating hexagonal triazine rings fabricated via the ionothermal trimerization reaction. They also contain plenty of nitrogen functional groups that increase affinity for some chemicals while rejecting others. Because of their tunable properties, many researchers have synthesized and tested CTFs for gas and liquid separation processes. Various studies of novel CTFs, mixed CTF composites, and CTF membranes have experimented for gas adsorption/separation (e.g., CO2, C2H2, H2, etc.) and desalination. Some CTF studies have determined the limits and potentials through advanced computer simulations while subsequent experiments have tested CTFs for photocatalytic properties, suggesting recyclability for greater sustainability. In this review, the covalent triazine framework-based separation membrane is discussed.

Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites : the Effects of Covalent Grafting (탄소나노튜브/폴리에스터 복합재의 역학적 거동과 하중전달에 관한 분자 동역학 전산모사 : 그래프팅 가공의 영향)

  • Jin, Juho;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • Molecular dynamics simulation and the Mori-Tanaka micromechanics study are performed to investigate the effect of the covalent grafting between CNT and polyester on the mechanical behavior and load transfer of nanocomposites. The transversely isotropic stress-strain curves are determined through the tension and shear simulations according to the covalent grafting. Also, isotropic properties of randomly dispersed nanocomposites are obtained by orientation averaging the transversely isotropic stiffness matrix. By addressing the grafting, the transverse Young's modulus and shear moduli of the nanocomposites are improved, while the longitudinal Young's modulus decreases due to the degradation of the grafted CNT.

Covalent Immobilization of Diaphorase in Viologen Polymer Network for Highly Sensitive Detection of NAD+ and NADH

  • Song, Jieun;Hong, Zhenyu;Koh, Ahyeon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.19-22
    • /
    • 2014
  • Here we report a highly sensitive and stable detection of $NAD^+$ and NADH by the electrode on which diaphorase (DI) is covalently immobilized in viologen polymer network. The network is prepared by the covalent formation of the structure by mixing propylamine viologen (PAV), poly(ethylene glycol)(400) diglycidyl ether (PEGDGE), an diaphorase (DI). The PAV/PEGDGE/DI modified electrode has the sensitivity of $0.02nA{\cdot}{\mu}M$ and the detection limit of $3{\mu}M$ with a response time of 2 s ($t_{90%}$) for NADH sensing.

Inorganic and Transition Metal Azides

  • Seok, Won-K.;Klapotke, Thomas M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.781-788
    • /
    • 2010
  • Experimental and theoretical studies show that all covalent azides possess a nonlinear azide group. They also rationalize this remarkable structural feature. We have seen that the most important non-covalent contributions in the covalently bound azides system (X-N1-N2-N3) are the $\pi$-delocalization over the entire molecule and a strong negative hyperconjugation which donates electron density from the filled $\sigma$ (X-N1) orbital into the unfilled, antibonding $\pi^*$ (N2-N3) orbital. For transition metal azide complexes, a bent configuration and a small difference between the N-N bond lengths, generally the longer one being adjacent to the transition metal, were observed.

Covalent Adaptable Liquid Crystal Elastomers Comprising Thiourea Bonds: Reprocessing, Reprogramming and Actuation

  • Lee, Jin-Hyeong;Park, Sungmin;Kim, Yong Seok;Kim, Dong-Gyun;Ahn, Suk-kyun
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.55-61
    • /
    • 2022
  • In this work, we report a highly deformable covalent adaptable-liquid crystal elastomer (CA-LCE) comprising dynamic thiourea bonds that enable macromolecular network rearrangement at elevated temperatures. The exchange of chain network is verified through stress-relaxation analyses and follows Arrhenius-type behavior. The unique capability of rearranging the chain network in the CA-LCE provides useful properties, such as welding, melt reprocessing, and shape reprogramming, that cannot be achieved by the conventional LCE comprising permanent crosslinks. Reversible actuation is further demonstrated by reprogramming the polydomain CA-LCE into a monodomain via mechanical stretching at elevated temperatures.