DOI QR코드

DOI QR Code

Inorganic and Transition Metal Azides

  • Published : 2010.04.20

Abstract

Experimental and theoretical studies show that all covalent azides possess a nonlinear azide group. They also rationalize this remarkable structural feature. We have seen that the most important non-covalent contributions in the covalently bound azides system (X-N1-N2-N3) are the $\pi$-delocalization over the entire molecule and a strong negative hyperconjugation which donates electron density from the filled $\sigma$ (X-N1) orbital into the unfilled, antibonding $\pi^*$ (N2-N3) orbital. For transition metal azide complexes, a bent configuration and a small difference between the N-N bond lengths, generally the longer one being adjacent to the transition metal, were observed.

Keywords

References

  1. Candan, P.; Manzano, C.; Losada, M. Nature 1976, 262, 715. https://doi.org/10.1038/262715a0
  2. White, R. E.; Coon, M. J. Annu. Rev. Biochem. 1980, 49, 315. https://doi.org/10.1146/annurev.bi.49.070180.001531
  3. Averill, B. A. Chem. Rev. 1996, 96, 2951. https://doi.org/10.1021/cr950056p
  4. Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley-Interscience: New York, 1988.
  5. Berry, J. F.; Bill, E.; Bothe, E.; George, S. D.; Mienert, B.; Neese, F.; Wieghardt, K. Science 2006, 312, 1937. https://doi.org/10.1126/science.1128506
  6. Mazumder, B.; Chirico, P.; Hector, A. L. Inorg. Chem. 2008, 47, 9684. https://doi.org/10.1021/ic800767m
  7. Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J. J. Am. Chem. Soc. 2008, 130, 16462. https://doi.org/10.1021/ja8059649
  8. Allen, A. D.; Senoff, C. W. Chem. Commun. 1965, 621.
  9. Mackay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385. https://doi.org/10.1021/cr020610c
  10. Leising, R. A.; Kubow, S. A.; Churchill, M. R.; Buttrey, L. A.; Ziller, J. W.; Takeuchi, K. Inorg. Chem. 1990, 29, 1306. https://doi.org/10.1021/ic00332a004
  11. Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon: Oxford, 1984.
  12. Hantzsch, A.; Schümann, M. Ber. Dtsch. Chem. Ges. 1900, 33, 522. https://doi.org/10.1002/cber.19000330182
  13. Geissler, P.; Klapotke, T. M.; Kroth, K.-H. Spectrochim. Acta 1995, 51A, 1075.
  14. Tornieporth-Oetting, I. C.; Klapotke, T. M. Angew. Chem. Int. Ed. 1995, 34, 511. https://doi.org/10.1002/anie.199505111
  15. Sima, J. Coord. Chem. Rev. 2006, 250, 2325. https://doi.org/10.1016/j.ccr.2006.03.004
  16. Strähle, J. Z. Anorg. Allg. Chem. 2007, 633, 1757. https://doi.org/10.1002/zaac.200700170
  17. Suzuki, T.; Kotera, M.; Takayama, A.; Kojima, M. Polyhedron 2009, 28, 2287 https://doi.org/10.1016/j.poly.2009.04.010
  18. Tornieporth-Oetting, I. C.; Klapötke, T. M. Combustion Efficiency and Air Quality; Hargittai, I., Vidoczy, T., Eds.; Plenum: New York,1995.
  19. Dehnicke, K. Adv. Inorg. Chem. Radiochem. 1983, 26, 169. https://doi.org/10.1016/S0898-8838(08)60093-8
  20. Klapotke, T. M. Chem. Ber. 1997, 130, 443. https://doi.org/10.1002/cber.19971300403
  21. Seok, W. K.; Yim, S. B.; Klapotke, T. M.; White, P. S. J. Organomet. Chem. 1998, 559, 165. https://doi.org/10.1016/S0022-328X(98)00408-2
  22. Massoud, S. S.; Mautner, F. A.; Abu-Youssef, M. A. M.; Shuaib, N. M. Polyhedron 1999, 18, 2061. https://doi.org/10.1016/S0277-5387(99)00080-7
  23. Seok, W. K.; Lee, H. N.; Kim, M. Y.; Klapotke, T. M.; Dong, Y. K.; Yun, H. J. Organomet. Chem. 2002, 654, 170. https://doi.org/10.1016/S0022-328X(02)01428-6
  24. Crawford, M.-J.; Ellern, A.; Mayer, P. Angew. Chem. Int. Ed. 2005, 44, 7874 https://doi.org/10.1002/anie.200502484
  25. Ercan, F.; Ates, B. M.; Aksu, L.; Soezeri, H.; Ercan, I.; Akatol, O. Z. Kristallogr. 2007, 222, 498. https://doi.org/10.1524/zkri.2007.222.9.498
  26. Walstrom, A.; Pink, M.; Yang, X.; Tomaszewski, J.; Baik, M.-H.;Caulton, K. G. J. Am. Chem. Soc. 2005, 127, 5330. https://doi.org/10.1021/ja050361k
  27. Haiges, R.; Boatz, J. A.; Bau, R.; Schneider, S.; Schroer, T.; Yousufuddin,M.; Christe, K. O. Angew. Chem. Int. Ed. 2005, 44, 1860. https://doi.org/10.1002/anie.200462740
  28. Zhang, L.; Li, L.-C.; Jiang, Z.-H.; Yan, S.-P.; Shen, P.-W. Inorg. Chimica Acta 2001, 320, 141. https://doi.org/10.1016/S0020-1693(01)00482-0
  29. Shin, J. H.; Bridgewater, B. M.; Churchill, D. G.; Baik, M.-H.;Friesner, R. A.; Parkin, G. J. Am. Chem. Soc. 2001, 123, 10111. https://doi.org/10.1021/ja011416v
  30. Belton, P. S.; Woollins, J. D. Magn. Reson. Chem. 1986, 24, 1080. https://doi.org/10.1002/mrc.1260241212
  31. Passmore, J.; Schriver, M. J. Inorg. Chem. 1988, 27, 2749. https://doi.org/10.1021/ic00289a001
  32. Winnewisser, B. P. J. Mol. Spectrosc. 1980, 82, 220. https://doi.org/10.1016/0022-2852(80)90112-5
  33. Christe, K. O.; Wilson, W. W.; Dixon, D. A.; Khan, S. I.; Bau, R.;Metzenthin, T.; Lu, R. J. Am. Chem. Soc. 1993, 115, 1836. https://doi.org/10.1021/ja00058a031
  34. Almenningen, A.; Bak, B.; Jansen, P.; Strand, T. G. Acta Chem. Scand. 1973, 27, 1531.
  35. Christe, K. O.; Christen, D.; Oberhammer, H.; Schack, C. J. Inorg. Chem. 1984, 23, 4283. https://doi.org/10.1021/ic00193a036
  36. Ebsworth, E. A. V.; Jenkins, D. R.; Mays, M. J.; Sugden, T. M.Proc. Chem. Soc. 1963, 21.
  37. Muidoch, J. D.; Rankin, D. W. H. Chem. Commun. 1972, 748.
  38. Christen, D.; Mack, H. G.; Schatte, G.; Willner, H. J. Am. Chem. Soc. 1988, 110, 707. https://doi.org/10.1021/ja00211a007
  39. Cook, R. L.; Gerry, M. C. L. J. Chem. Phys. 1970, 53, 2525. https://doi.org/10.1063/1.1674357
  40. Johnson, J. P.; MacLean, G. K.; Passmore, J.; White, P. S. Can. J. Chem. 1989, 67, 1687. https://doi.org/10.1139/v89-259
  41. Ang, H. G.; Kwik, W.-L.; Lee, Y. W.; Oberhammer, H. Inorg. Chem. 1994, 33, 4425. https://doi.org/10.1021/ic00098a001
  42. Ang, H. G.; Kwik, W.-L.; Lee, Y. W.; Liedle, S.; Oberhammer, H.J. Mol. Struct. 1992, 268, 389. https://doi.org/10.1016/0022-2860(92)80225-7
  43. Ang, H. G.; Lee, Y. W.; Novak, I.; Potts, A. W. J. Phys. Chem.1994, 98, 12526. https://doi.org/10.1021/j100099a014
  44. Glukhovtsev, M. N.; Schleyer, P. v. R. Chem. Phys. Lett. 1992,198, 547. https://doi.org/10.1016/0009-2614(92)85029-A
  45. Harcourt, R. D. J. Mol. Struct. 1993, 300, 245. https://doi.org/10.1016/0022-2860(93)87022-2
  46. Harcourt, R. D. Chem. Eng. News 1985, 53(3), 77.
  47. Harcourt, R. D. New J. Chem. 1992, 16, 667.
  48. Harcourt, R. D. J. Mol. Struct. (Theochem) 1992, 259, 155 https://doi.org/10.1016/0166-1280(92)87011-N
  49. Harcourt, R. D.; Sillitoe, J. F. Aust. J. Chem. 1974, 27, 691. https://doi.org/10.1071/CH9740691
  50. Richardson, W. C.; Setser, D. W. Can. J. Chem. 1969, 47, 2725. https://doi.org/10.1139/v69-450
  51. Alexander, M. H.; Werner, H.-J.; Dagdigina, P. J. J. Chem. Phys.1988, 89, 1388. https://doi.org/10.1063/1.455138
  52. Kajimoto, O.; Yamamoto, T.; Fueno, T. J. Phys. Chem. 1979, 83,429. https://doi.org/10.1021/j100467a001
  53. Otto, M.; Lotz, S. D.; Frenking, G. Inorg. Chem. 1992, 31, 3647. https://doi.org/10.1021/ic00043a028
  54. Schulz, A.; Tornieporth-Oetting, I. C.; Klapotke, T. M. Inorg. Chem. 1995, 34, 4343. https://doi.org/10.1021/ic00121a012
  55. Hargittai, M.; Tornieporth-Oetting, I. C.; Klapötke, T. M.; Kolonitz,M.; Hargittai, I. Angew. Chem. Int. Ed. 1993, 32, 759. https://doi.org/10.1002/anie.199307591
  56. Buzek, P.; Klapötke, T. M.; Schleyer, P. v. R.; Tornieporth-Oetting,I. C.; White, P. S. Angew. Chem. Int. Ed. 1993, 32, 275. https://doi.org/10.1002/anie.199302751
  57. Hargittai, M.; Molnar, J.; Klapötke, T. M.; Tornicporth-Oetting,I. C.; Kolonitz, M.; Hargittai, I. J. Phys. Chem. 1994, 98, 10095. https://doi.org/10.1021/j100091a025
  58. Munz, H.-O.; Bodenseh, H.-K.; Klapötke, T. M. 14th Colloquium on High-Resolution Molecular Spectroscopy, September 11-15, Dijon, 1995.
  59. Tornieporth-Oetting, I. C.; Buzek, P.; Schleyer, P. v. R.; Klapotke,T. M. Angew. Chem. Int. Ed. Engl. 1992, 31, 1338. https://doi.org/10.1002/anie.199213381
  60. Tornieporth-Oetting, I. C.; Klapotke, T. M.; Schulz, A.; Buzek,P.; Schleyer, P. v. R. Inorg. Chem. 1993, 32, 5640. https://doi.org/10.1021/ic00076a038
  61. Schulz, A.; Tornieporth-Oetting, I. C.; Klapotke, T. M. Inorg Chem. 1995, 34, 4343. https://doi.org/10.1021/ic00121a012
  62. Klapotke, T. M. In Moderne Anorganische Chemie, 3rd ed.; Riedel, E., Ed.; Walter de Gruyter: Berlin, 2007.
  63. Janoschek, R. Angew. Chem. Int. Ed. 1993, 32, 230. https://doi.org/10.1002/anie.199302301
  64. Holleman, A. F.; Wiberg, E.; Niberg, N. Lehrbuch der Anorganischen Chemie; Walter de Gruyter: Berlin-New York, 1985.
  65. Campana, C. F.; Lo, F. Y.-K.; Dahl, L. F. Inorg. Chem. 1979, 18,3060. https://doi.org/10.1021/ic50201a023
  66. Schleyer, P. v. R.; Kos, A. J. Tetrahedron 1983, 39, 1141. https://doi.org/10.1016/S0040-4020(01)91877-0
  67. Schleyer, P. v. R.; Kaufmann, E.; Kos, A, J.; Mayr, H.; Chandrasekhar,J. Chem. Commun. 1986, 1583.
  68. Kotera, M.; Sekioka, Y.; Suzuki, T. Inorg. Chimica Acta 2008,361, 1479. https://doi.org/10.1016/j.ica.2007.09.040
  69. Dave, B. C.; Czemuszewicz, R. S. J. Coord. Chem. 1994, 33, 257. https://doi.org/10.1080/00958979408024284
  70. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  71. Seok, W. K.; Yim, S. B.; Lee, H. N.; Klapötke, T. M. Z. Naturforsch.2000, 55b, 462.
  72. Dorner, H.; Dehnicke, K.; Massa, W.; Schmidt, R. Z. Naturforsch. B 1983, 38, 437.
  73. Dubgen, R.; Dehnicke, K. Naturwissenschaften 1978, 65, 535. https://doi.org/10.1007/BF00439797
  74. Dehnicke, K. Angew. Chem. Int. Ed. 1967, 6, 240. https://doi.org/10.1002/anie.196702401
  75. Ang, H. G.; Cai, Y. M.; Kwik, W. L. 11th Winter Fluorine ACS Conference, Lecture 35, St. Petersburg, USA, 1993.
  76. Siivari, J.; Chivers, T.; Laitinen, R. Angew. Chem. Int. Ed. 1992,31, 1518. https://doi.org/10.1002/anie.199215181
  77. Aliaga-Alcalde, N.; George, S. D.; Mienert, B.; Bill, E.; Wieghardt,K.; Neese, F. Angew. Chem. Int. Ed. 2005, 44, 2908. https://doi.org/10.1002/anie.200462368
  78. Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E. N.; Kirk, M. L.;Smith, J. M. J. Am. Chem. Soc. 2008, 130, 10515. https://doi.org/10.1021/ja8027372
  79. Kim, W. S.; Kim, Y.-J.; Lee, S. W. Bull. Korean Chem. Soc.2002, 23, 1177 https://doi.org/10.5012/bkcs.2002.23.8.1177
  80. Kim, Y.-J.; Lee, S.-H.; Lee, S.-H; Jeon, S. I.;Lim, M. S.; Lee, S. W. Inorg. Chimica Acta 2005, 358, 650. https://doi.org/10.1016/j.ica.2004.09.056
  81. Matsumura, S.; Shikano, K.; Oi, T.; Suzuki, N.; Nagao, H. Inorg. Chem. 2008, 47, 9125. https://doi.org/10.1021/ic801070a
  82. Demadis, K. D.; Meyer, T. J.; White, P. S. Inorg. Chem. 1998, 37,3610. https://doi.org/10.1021/ic9800280
  83. Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Science 2005, 309, 1835. https://doi.org/10.1126/science.1116452
  84. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed.2001, 40, 2004. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  85. Evans, R. A. Aust. J. Chem. 2007, 60, 384. https://doi.org/10.1071/CH06457
  86. Erments, M. I.; Gavriliuk, A. G.; Serebryanaya, N. R.; Trojan, I.A.; Dzivenko, D. A.; Boehler, R.; Mao, H. K.; Hemley, R. J. J. Chem. Phys. 2004, 121, 11296. https://doi.org/10.1063/1.1814074
  87. Erments, M. I.; Gavriliuk, A. G.; Trojan, I. A.; Dzivenko, D. A.;Boehler, R. Nature Materials 2004, 121, 11296.
  88. Erments, M. I.; Popov, M. Y.; Trojan, I. A,; Denisov, V. N.;Boehler, R.; Hemley, R. J. J. Chem. Phys. 2004, 120, 10618. https://doi.org/10.1063/1.1718250
  89. Hanfland, M.; Lorenzen, M.; Wassilew-Ruel, C.; Zontone, F. Rev. High Pressure Sci. Technol. 1998, 7, 787. https://doi.org/10.4131/jshpreview.7.787
  90. McMahan, M. K.; Lasar, R. Phys. Rev. Lett. 1985, 54, 1929. https://doi.org/10.1103/PhysRevLett.54.1929
  91. Martin, R. M.; Needs, R. J. Phys. Rev. B 1986, 34, 5082. https://doi.org/10.1103/PhysRevB.34.5082

Cited by

  1. Recoupled-Pair Bonding and 4-Electron 3-Center Bonding Units vol.115, pp.24, 2011, https://doi.org/10.1021/jp111573z
  2. Molecular Structure of Hydrazoic Acid with Hydrogen-Bonded Tetramers in Nearly Planar Layers vol.133, pp.31, 2011, https://doi.org/10.1021/ja2027053
  3. Paradigms and paradoxes: why is the electron affinity of the azide radical, N3, so large? vol.22, pp.1, 2011, https://doi.org/10.1007/s11224-010-9708-5
  4. Ground and excited state properties of photoactive platinum(iv) diazido complexes: Theoretical considerations vol.40, pp.29, 2011, https://doi.org/10.1039/c1dt10493d
  5. Azide Chemistry - An Inorganic Perspective, Part I Metal ­Azides: Overview, General Trends and Recent Developments vol.639, pp.7, 2013, https://doi.org/10.1002/zaac.201300162
  6. )ruthenium(II) dichloromethane hemisolvate vol.70, pp.10, 2014, https://doi.org/10.1107/S1600536814019187
  7. CN] vol.127, pp.51, 2015, https://doi.org/10.1002/ange.201505418
  8. Taming Tin(IV) Polyazides vol.21, pp.51, 2015, https://doi.org/10.1002/chem.201503478
  9. CN] vol.54, pp.51, 2015, https://doi.org/10.1002/anie.201505418
  10. vol.23, pp.3, 2016, https://doi.org/10.1002/chem.201604154
  11. ] vol.45, pp.26, 2016, https://doi.org/10.1039/C6DT01479H
  12. Ammine Complexes of Na-, Ag-, Mn-, and Zn-Azides vol.642, pp.14, 2016, https://doi.org/10.1002/zaac.201600167
  13. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes vol.56, pp.9, 2017, https://doi.org/10.1021/acs.inorgchem.7b00371
  14. N NMR Spectroscopy vol.17, pp.43, 2011, https://doi.org/10.1002/chem.201101409
  15. Festkörperstrukturvergleich der Halogenazide XN3 (X=Cl, Br, I) vol.124, pp.51, 2010, https://doi.org/10.1002/ange.201206028
  16. A Comparison of the Solid‐State Structures of Halogen Azides XN3 (X=Cl, Br, I) vol.51, pp.51, 2012, https://doi.org/10.1002/anie.201206028
  17. Ab initio MCSCF study on several azide molecules: energy component analysis of the pseudo-Jahn-Teller effect vol.3, pp.27, 2010, https://doi.org/10.1039/c3ra41103f
  18. Coordination Adducts of Niobium(V) and Tantalum(V) Azide M(N3)5 (M=Nb, Ta) with Nitrogen Donor Ligands and their Self‐Ionization vol.126, pp.21, 2010, https://doi.org/10.1002/ange.201402775
  19. Coordination Adducts of Niobium(V) and Tantalum(V) Azide M(N3)5 (M=Nb, Ta) with Nitrogen Donor Ligands and their Self‐Ionization vol.53, pp.21, 2010, https://doi.org/10.1002/anie.201402775
  20. The Vanadium(V) Oxoazides [VO(N3)3], [(bipy)VO(N3)3], and [VO(N3)5]2− vol.127, pp.31, 2010, https://doi.org/10.1002/ange.201503985
  21. The Vanadium(V) Oxoazides [VO(N3)3], [(bipy)VO(N3)3], and [VO(N3)5]2− vol.54, pp.31, 2010, https://doi.org/10.1002/anie.201503985
  22. The First Molybdenum(VI) and Tungsten(VI) Oxoazides MO2(N3)2, MO2(N3)2⋅2 CH3CN, (bipy)MO2(N vol.127, pp.33, 2010, https://doi.org/10.1002/ange.201504629
  23. The First Molybdenum(VI) and Tungsten(VI) Oxoazides MO2(N3)2, MO2(N3)2⋅2 CH3CN, (bipy)MO2(N vol.54, pp.33, 2010, https://doi.org/10.1002/anie.201504629
  24. Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation vol.141, pp.41, 2010, https://doi.org/10.1021/jacs.9b09064
  25. Isolation and X-ray Crystal Structure of an Electrogenerated TEMPO-N3 Charge-Transfer Complex vol.23, pp.2, 2021, https://doi.org/10.1021/acs.orglett.0c03966
  26. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes vol.6, pp.4, 2010, https://doi.org/10.1002/slct.202100061
  27. Photo-induced primary processes of trans-[Co(acac)2(N3)(py)] in liquid solution studied by femtosecond vibrational and electronic spectroscopies vol.119, pp.17, 2010, https://doi.org/10.1080/00268976.2021.1964043