Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.4.55

Approaches to Reduce the Contact Resistance by the Formation of Covalent Contacts in Graphene Thin Film Transistors  

Na, Youngeun (Integrated Science and Engineering Division, Yonsei University)
Han, Jaehyun (School of Integrated Technology, Yonsei University)
Yeo, Jong-Souk (Integrated Science and Engineering Division, Yonsei University)
Publication Information
Applied Science and Convergence Technology / v.26, no.4, 2017 , pp. 55-61 More about this Journal
Abstract
Graphene, with a carrier mobility achieving up to $140,000cm^2/Vs$ at room temperature, makes it an ideal material for application in semiconductor devices. However, when the metal comes in contact with the graphene sheet, an energy barrier forms at the metal-graphene interface, resulting in a drastic reduction of the carrier mobility of graphene. In this review, the various methods of forming metal-graphene covalent contacts to lower the contact resistance are discussed. Furthermore, the graphene sheet in the area of metal contact can be cut in certain patterns, also discussed in this review, which provides a more efficient approach to forming covalent contacts, ultimately reducing the contact resistance for the realization of high-performance graphene devices.
Keywords
Graphene; Carrier mobility; Contact resistance; Covalent contacts; Patterning;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).   DOI
2 D. W. Yue, C. H. Ra, X. C. Liu, D. Y. Lee, and W. J. Yoo, Nanoscale. 7, 825 (2014).
3 G. Giovannetti, P. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).   DOI
4 K. Nagashio and A. Toriumi, Jpn. J. Appl. Phys. 50, 070108 (2011).   DOI
5 C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. I. Kravchenko, and S. J. Pearton, J. Vac. Sci. Technol., B. 30, 060604 (2012).   DOI
6 W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. Hight Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, Appl. Phys. Lett. 102, 183110 (2013).   DOI
7 S. K. Hong, S. M. Song, O. Sul, and B. J. Cho, Carbon Lett. 14, 171 (2013).   DOI
8 A. D. Franklin, S. J. Han, A. A. Bol, and V. Perebeinos, IEEE Electron Device Lett. 33, 17 (2012).   DOI
9 A. Hsu, H. Wang, K. K. Kim, J. Kong, and T. Palacios, IEEE Electron Device Lett. 32, 1008 (2011).   DOI
10 Q. Gao and J. Guo, APL Mater. 2, 056105 (2014).   DOI
11 A. Krasheninnikov and F. Banhart, Nat. Mater. 6, 723 (2007).   DOI
12 J. Han, J. Y. Lee, J. Choe, and J. S. Yeo, RSC Adv. 6, 76273 (2016).   DOI
13 O. Lehtinen, I. L. Tsai, R. Jalil, R. R. Nair, J. Keinonen, U. Kaiser, and I. V. Grigorieva, Nanoscale. 6, 6569 (2014).   DOI
14 A. Meersha, H. B. Variar, K. Bhardwaj, A. Mishra, S. Raghavan, N. Bhat, and M. Shrivastava, IEEE IEDM, 5.3.1 (2016).
15 J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, and D. Snyder, Appl. Phys. Lett. 98, 053103 (2011).   DOI
16 F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano. 5, 26 (2010).
17 Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, Nano Lett. 12, 414 (2011).
18 C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, J. Appl. Phys. 108, 123711 (2010).   DOI
19 W. S. Leong, C. T. Nai, and J. T. Thong, Nano Lett. 14, 3840 (2014).   DOI
20 W. S. Leong, H. Gong, and J. T. Thong, ACS Nano. 8, 994 (2013).
21 S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, Appl. Phys. Lett. 104, 183506 (2014).   DOI
22 X. Chen, Y. J. Park, T. Das, H. Jang, J. B. Lee, and J. H. Ahn, Nanoscale. 8, 15181 (2016).   DOI
23 Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012).   DOI
24 Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep. 3, 1866 (2013).   DOI
25 V. Passi, A. Gahoi, J. Ruhkopf, S. Kataria, F. Vaurette, E. Pallecchi, H. Happy, and M. C. Lemme, IEEE, 236 (2016).
26 C. Cho, S. K. Lee, J. W. Noh, W. Park, S. Lee, Y. G. Lee, H. J. Hwang, C. G. Kang, M. H. Ham, and B. H. Lee, Appl. Phys. Lett. 106, 213107 (2015).   DOI
27 J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, ACS Nano. 7, 3661 (2013).   DOI
28 H. Y. Park, W. S. Jung, D. H. Kang, J. Jeon, G. Yoo, Y. Park, J. Lee, Y. H. Jang, J. Lee, S. Park, H. Y. Yu, B. Shin, S. Lee, and J. H. Park, Adv. Mater. 28, 864 (2015).
29 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Science. 320, 1308 (2008).   DOI
30 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. 4, 611 (2010).   DOI
31 D. Prezzi, D. Varsano, A. Ruini, A. Marini, and E. Molinari, Phys. Rev. B. 77, 041404 (2008).
32 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science. 321, 385 (2008).   DOI
33 A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).   DOI
34 K. S. Novoselov, S. V. Morozov, T. M. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, Phys. Status Solidi B. 244, 4106 (2007).   DOI
35 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature. 438, 197 (2005).   DOI
36 F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dorr, Y. Mei, A. Rastelli, and O. G. Schmidt, Nano Lett. 10, 3453 (2010).   DOI
37 S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett. 92, 151911 (2008).   DOI
38 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).   DOI
39 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature. 457, 706 (2009).   DOI
40 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).   DOI
41 J. Han, J. Y. Lee, and J. S. Yeo, Carbon. 105, 205 (2016).   DOI
42 Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, Appl. Phys. Lett. 95, 209 (2009).
43 J. Shen, Y. Zhu, X. Yang, and C. Li, Chem. Commun. 48, 3686 (2012).   DOI
44 F. Xia, D. B. Farmer, Y.-m. Lin, and P. Avouris, Nano Lett. 10, 715 (2010).   DOI
45 Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Electroanalysis. 22, 1027 (2010).   DOI
46 F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).   DOI
47 I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Nat. Nanotechnol. 3, 654 (2008).   DOI
48 L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science. 342, 614 (2013).   DOI
49 L. D. Carr, and M. T. Lusk, Nature Nanotechnol. 5, 316 (2010).   DOI
50 Q. Zheng, Y. Geng, S. Wang, Z. Li, and J. K. Kim, Carbon. 48, 4315 (2010).   DOI
51 C. Wang, Y. Liu, L. Lan, and H. Tan, Nanoscale. 5, 4454 (2013).   DOI
52 P. Sutter, J. T. Sadowski, and E. Sutter, Phys. Rev. B. 80, 245411 (2009).   DOI
53 S. Y. Zhou, G. H. Gweon, A. Fedorov, P. First, W. De Heer, D. H. Lee, F. Guinea, A. C. Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).   DOI
54 M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7, 1643 (2007).   DOI