Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.184

Recent Advances in Covalent Triazine Framework based Separation Membranes  

Kim, Esther (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.31, no.3, 2021 , pp. 184-199 More about this Journal
Abstract
As a branch of covalent organic frameworks (COF), covalent triazine frameworks (CTF) are inherently porous structures composed of networks of repeating hexagonal triazine rings fabricated via the ionothermal trimerization reaction. They also contain plenty of nitrogen functional groups that increase affinity for some chemicals while rejecting others. Because of their tunable properties, many researchers have synthesized and tested CTFs for gas and liquid separation processes. Various studies of novel CTFs, mixed CTF composites, and CTF membranes have experimented for gas adsorption/separation (e.g., CO2, C2H2, H2, etc.) and desalination. Some CTF studies have determined the limits and potentials through advanced computer simulations while subsequent experiments have tested CTFs for photocatalytic properties, suggesting recyclability for greater sustainability. In this review, the covalent triazine framework-based separation membrane is discussed.
Keywords
Covalent organic frameworks; Covalent triazine framework; Membrane; Desalination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Artz, "Covalent Triazine-based Frameworks - Tailor-made Catalysts and Catalyst Supports for Molecular and Nanoparticulate Species", ChemCatChem, 10, 1753 (2018).   DOI
2 S. Dey, S. Bugel, S. Sorribas, A. Nuhnen, A. Bhunia, J. Coronas, C. Janiak, "Synthesis and Characterization of Covalent Triazine Framework CTF-1@Polysulfone Mixed Matrix Membranes and Their Gas Separation Studies", Front. Chem., 7, 693 (2019).   DOI
3 X. Zhu, C. Tian, S.M. Mahurin, S.H. Chai, C. Wang, S. Brown, G.M. Veith, H. Luo, H. Liu, S. Dai, "A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation", J. ACS, 134, 10478 (2012).
4 T. Wang, H. Wu, S. Zhao, W. Zhang, M. Tahir, Z. Wang, J. Wang, "Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation", Chem. Eng. J., 384, 123347 (2020).   DOI
5 S. Cao, Y. Zhang, N. He, J. Wang, H. Chen, F. Jiang, "Metal-free 2D/2D heterojunction of covalent triazine-based frameworks/graphitic carbon nitride with enhanced interfacial charge separation for highly efficient photocatalytic elimination of antibiotic pollutants", J. Hazard. Mater., 391, 122204 (2020).   DOI
6 H. Jiang, J. Zhang, T. Huang, J. Xue, Y. Ren, Z. Guo, H. Wang, L. Yang, Y. Yin, Z. Jiang, M.D. Guiver, "Mixed-Matrix Membranes with Covalent Triazine Framework Fillers in Polymers of Intrinsic Microporosity for CO2 Separations", Ind. Eng. Chem. Res., 59, 5296 (2020).   DOI
7 R.L. Thankamony, X. Li, S.K. Das, M.M. Ostwal, Z. Lai, "Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations", J. Membr. Sci., 591, 117348 (2019).   DOI
8 Y. Wang, J. Li, Q. Yang, C. Zhong, "Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification", ACS Appl. Mater. Interfaces, 8, 8694 (2016).   DOI
9 G.R. Xu, J.M. Xu, H.C. Su, X.Y. Liu, L. Lu, H.L. Zhao, H.J. Feng, R. Das, "Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions", Desalination, 451, 18 (2019).   DOI
10 L.-C. Lin, J. Choi, J.C. Grossman, "Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination", Chem. Commun., 51, 14921 (2015).   DOI
11 G. Li, W. Wang, Q. Fang, F. Liu, "Covalent triazine frameworks membrane with highly ordered skeleton nanopores for robust and precise molecule/ion separation", J. Membr. Sci., 595, 117525 (2020).   DOI
12 A. Yousaf, A.M. Arif, N. Xu, J. Zhou, C.Y. Sun, X.L. Wang, Z.M. Su, "A triazine-functionalized nanoporous metal-organic framework for the selective adsorption and chromatographic separation of transition metal ions and cationic dyes and white-light emission by Ln3+ ion encapsulation", J. Mater. Chem. C, 7, 8860 (2019).
13 C. Krishnaraj, H.S. Jena, K. Leus, H.M. Freeman, L.G. Benning, P. Van Der Voort, "An aliphatic hexene-covalent triazine framework for selective acetylene/methane and ethylene/methane separation", J. Mater. Chem. A, 7, 13188 (2019).   DOI
14 K. Yuan, C. Liu, J. Han, G. Yu, J. Wang, H. Duan, Z. Wang, X. Jian, "Phthalazinone structurebased covalent triazine frameworks and their gas adsorption and separation properties", RSC Adv., 6, 12009 (2016).   DOI
15 M.A. Solomos, F.J. Claire, T.J. Kempa, "2D molecular crystal lattices: Advances in their synthesis, characterization, and application", J. Mater. Chem. A, 7, 23537 (2019).   DOI
16 Z. Xia, Y. Zhao, S.B. Darling, "Covalent Organic Frameworks for Water Treatment", Adv. Mater. Interfaces, 8, 2001507 (2021).   DOI
17 A. Bhunia, I. Boldog, A. Moller, C. Janiak, "Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation", J. Mater. Chem. A, 1, 14990 (2013).   DOI
18 J. Zhu, S. Yuan, J. Wang, Y. Zhang, M. Tian, B. Van der Bruggen, "Microporous organic polymer-based membranes for ultrafast molecular separations", Prog. Polym. Sci., 110, 101308 (2020).   DOI
19 A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Castelletto, S. Mikhalovsky, "Outlook for graphene-based desalination membranes", npj Clean Water, 1, 5 (2018).   DOI
20 J. Kim, M.R. Othman, "Research Trend on ZIF-8 Membranes for Propylene Separation", Membr. J., 29, 67 (2019).   DOI
21 C. Yin, Z. Zhang, J. Zhou, Y. Wang, "Single-Layered Nanosheets of Covalent Triazine Frameworks (CTFs) by Mild Oxidation for Molecular-Sieving Membranes", ACS Appl. Mater. Interfaces, 12, 18944 (2020).   DOI
22 Z. Yang, W. Guo, S.M. Mahurin, S. Wang, H. Chen, L. Cheng, K. Jie, H.M. Meyer III, D.E. Jiang, G. Liu, W. Jin, I. Popovs, S. Dai, "Surpassing Robeson Upper Limit for CO2/N2 Separation with Fluorinated Carbon Molecular Sieve Membranes", Chem, 6, 631 (2020).   DOI
23 C. Zhang, B.H. Wu, M.Q. Ma, Z. Wang, Z.K. Xu, "Ultrathin metal/covalent-organic framework membranes towards ultimate separation", Chem. Soc. Rev., 48, 3811 (2019).   DOI
24 H. Wang, H. Wang, H. Jiang, A. Sheng, Z. Wei, Y. Li, C. Wu, H. Li, "Positively Charged Polysulfonamide Nanocomposite Membranes Incorporating Hydrophilic Triazine-Structured COFs for Highly Efficient Nanofiltration", ACS Appl. Nano Mater., 3, 9329 (2020).   DOI
25 J. Du, Y. Cui, Y. Liu, R. Krishna, Y. Yu, S. Wang, C. Zhang, X. Song, Z. Liang, "Preparation of benzodiimidazole-containing covalent triazine frameworks for enhanced selective CO2 capture and separation", Microporous Mesoporous Mater., 276, 213 (2019).   DOI
26 Y. Lu, J. He, Y. Chen, H. Wang, Y. Zhao, Y. Han, Y. Ding, "Effective Acetylene/Ethylene Separation at Ambient Conditions by a Pigment-Based Covalent-Triazine Framework", Macromol. Rapid Commun., 39, 1700468 (2018).   DOI
27 Y. Ying, D. Liu, J. Ma, M. Tong, W. Zhang, H. Huang, Q. Yang, C. Zhong, "A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation", J. Mater. Chem. A, 4, 13444 (2016).   DOI
28 S. Dey, A. Bhunia, H. Breitzke, P.B. Groszewicz, G. Buntkowsky, C. Janiak, "Two linkers are better than one: enhancing CO2 capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers", J. Mater. Chem. A, 5, 3609 (2017).   DOI
29 G. Li, J. Ye, Y. Shen, Q. Fang, F. Liu, "Covalent triazine frameworks composite membrane (CdS/CTF-1) with enhanced photocatalytic in-situ cleaning and disinfection properties for sustainable separation", Chem. Eng. J., 424, 127784 (2020).
30 J. H. Jo, W. S. Chi, "Review on Membrane Materials to Improve Plasticization Resistance for Gas Separations", Membr. J., 30, 385 (2020).   DOI
31 D. Kim, "Review on Zeolite MFI Membranes for Xylene Isomer Separation", Membr. J., 29, 202 (2019).   DOI
32 J. Wang, S. Zhuang, "Covalent organic frameworks (COFs) for environmental applications", Coord. Chem. Rev., 400, 213046 (2019).   DOI
33 B. Zheng, X. Lin, X. Zhang, D. Wu, K. Matyjaszewski, "Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage", Adv. Funct. Mater., 30, 1907006 (2020).   DOI
34 S. Dey, A. Bhunia, I. Boldog, C. Janiak, "A mixed-linker approach towards improving covalent triazine-based frameworks for CO2 capture and separation", Microporous Mesoporous Mater., 241, 303 (2017).   DOI
35 J. Safaei, P. Xiong, G. Wang, "Progress and prospects of two-dimensional materials for membranebased water desalination", Mater. Today Adv., 8, 100108 (2020).   DOI