• Title/Summary/Keyword: coupling process

Search Result 738, Processing Time 0.035 seconds

Design Optimization on End Coupling as a Power Transmission Component for Aluminum Hot Rolling Process (알루미늄 열간 압연공정의 동력 전달용 커플링에 대한 최적화 설계)

  • Lee, Hyun-Seung;Lee, Young-Shin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The End Coupling is main component of the aluminum hot roll process. The End Coupling is used for transmission of rotational power with heavy-duty load. Fracture of the End Coupling cause serious economic losses because an End Coupling is a very expensive component and it takes a long time to repair it. Therefore, preventing the destruction of the End Coupling is essential for ensuring a long mechanical life cycle. In this paper, the parametric study on the End Coupling was performed in order to minimize maximum stress under operation loads. To verify the interference of spindle assembly with modified End Coupling, kinematics simulation was performed by applying the various combination type and dynamic boundary condition of the spindle assembly. The interference of optimized model was not occurred during combination process and driving process. As a result of an optimum design for life extension on End Coupling, the maximum stress of modified End Coupling was lower than that of the initial model by 26%.

Injection Molding of Silicon Nitride Powders Treated with Coupling Agents (커플링제로 처리된 질화규소 분말의 사출성형)

  • 송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.131-138
    • /
    • 1993
  • The effects of silane coupling agents on the injection molding process were investigated using silicone nitride mixtrues with a binder system containing polypropylene as a major binder (55vol% solid loading). The formation of bonding between silicon nitride powder and coupling agents was confirmed through the analyses of powder surface. The use of coupling agents improved mixing characteristics judged by the torque change during mixing process. the coupling agents also reduced molten viscosity of the mixture considerably, which is a main factor to determine the flow of the mixture. However, the bonding between coupling agents and polymers had a negative effect on the debinding process by retarding the thermal decomposition.

  • PDF

EM Coupling Effect of sprint inductors by isolation methode in standard CMOS process (Spiral 인덕터 간 격리방법에 따른 Electromagnetic 커플링 효과)

  • Choi, Moon-Ho;Kim, Han-Seok;Jung, Sung-Il;Kim, Yeong-Seuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.91-92
    • /
    • 2005
  • The electromagnetic coupling effect in standard CMOS process is simulated and evaluated. EM coupling transfer characteristic between planar spiral inductors by isolation methode in standard CMOS have simulated and measured. Measurement results show that suppression of EM coupling effect by ground guardring. The evaluated structures are fabricated 1P5M(one poly, five metal) 0.25um standard CMOS process. These measurement results provide a isolation design guidelines in standard CMOS process for Rf coupling suppression.

  • PDF

Structural analysis and drive simulation of the top spindle, end coupling and slipper metal which is an important component of hot rolling process (열간압연공정의 주요구성품인 Top Spindle, End Coupling and Slipper Metal의 구조해석 및 구동시뮬레이션)

  • Byun S.W.;Lee Y.S.;Lee H.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.674-680
    • /
    • 2005
  • The top spindle, end coupling and slipper metal are important components of the hot rolling process and are used for transmission of heavy rotational power. In this study, kinematic analysis is conducted using finite element method for hot rolling process under slipper metal combination types and operation situations. The structural analysis is performed by applying the combination type, rotational boundary condition of top spindle, end coupling and slipper metal. This study aims to minimize the mechanical problems which might happen in the production process.

  • PDF

Maximum Optical Coupling Point Search Algorithm for Manufacturing of Optical Device (광전소자 제조를 위한 최대 광 결합점 검색 알고리즘)

  • 한일호;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.9-12
    • /
    • 2001
  • Optical aligning process to archive the maximum optical coupling is crucial in many optical device manufacturing line such as laser diode module. Due to the three-dimensional nature of housing module and the aligning process for laser diode coupler, large amount of the manufacturing time, typically ranging from tens of minutes to an hour has to be devoted to the aligning process alone. In this thesis, we propose a new optical aligning process that employee a two-pass algorithm: coarse-to-fine search. Coarse search is a kind of blind search that finds the candidate region where the maximum optical coupling might mostly occur, followed by a fine searching that finds the maximum within the candidate region. The algorithm has been tested on 50 samples of cam-type laser diode modules, and the experimental results are analyzed in terms of aligning time and coupling efficiency.

  • PDF

Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling (곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석)

  • Yu, Yonghun;Cho, Yongjoo;Lee, Donghyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

Flip-Flap Valve-Type Breakaway Coupling through Reverse Engineering (역설계를 통한 Flip-Flap 밸브형 분리식 커플링에 관한 연구)

  • Ahn, Hee-Hak;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.16-22
    • /
    • 2016
  • This study is a structural analysis of 3" Cryogenic Safety Breakaway Coupling using a manufactured product from KLAW Company. Breakaway coupling is very important in the pipe system, especially when transporting fuel or gas in the pipeline. For the analysis of the patent infringement target, Dover and KLAW Company's technologies (US 08127785, EP 0764809) were analyzed. Finally, the flip-flap valve overlap was measured after combining the breakaway coupling through 3D modeling, and the valve overlap had a 0.7mm measurement value from the height gauge. The safety breakaway coupling consisted of a total of 62 pieces (body: 42, valve module: 21).

Development of UV molding Process to Integrate Microlens Array on VCSEL Array for Optical Communication (광통신 용 VCSEL Array상에 Microlens Array를 집적하기 위한 UV성형 공정기술 개발)

  • 한정원;김석민;김홍민;이지승;임지석;강신일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.840-843
    • /
    • 2004
  • UV molding is a process for integrating micro/nano polymeric optical components on optoelectronic modules. In the present study, a microlens array for vertical cavity surface emitting laser(VCSEL) to fiber coupling was designed, integrated and tested. At the design stage, design variables ware optimized to maximize the coupling efficiency, and tolerance analysis was carried out. At the integration stage, the UV transparent mold was fabricated and the microlens array on VCSEL array was integrated by UV molding process. Finally the coupling efficiency of VCSEL to fiber was measured and analyzed.

  • PDF

A Study on the Selection of Grinding Conditions and Evaluation for Curvic Coupling Tooth Machining (Curvic Coupling Tooth 가공의 연삭 조건 선정 및 가공면 평가에 관한 연구)

  • Hur, Du-Kwon;Kim, Myung-Hyun;Kim, Chan Kyu;Jeong, Young Cheol;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.87-92
    • /
    • 2018
  • As gas turbines for power generation become increasingly more important for high capacity and high efficiency, the technological development and investment of companies are increasing globally. Gas turbine manufacturing technology is only owned by a few companies such as GE, Siemens, and MHI, and our country currently depends on imports of processing technology and component parts. The core part of the gas turbine is curvic coupling tooth processing technology that improves turbine efficiency by smoothly transmitting power to the turbine rotor. Curvic coupling tooth machining and evaluation research is restricted overseas, and it is not underway in Korea. Therefore, in this study, roughing and finishing process technology for curvic coupling tooth machining is developed and a quantitative evaluation method is proposed. For the development of machining technology, the analysis of critical parameters was performed through C & E analysis. In the roughing process, the conditions considering the minimum machining time and tool load ratio were determined. Finishing process conditions were determined based on the contact ratio between the tooth surfaces. The image-processing method is presented for evaluation of the contact ratio and a verification test was performed.