• Title/Summary/Keyword: coupling method

Search Result 2,409, Processing Time 0.03 seconds

An Ontology-based Data Variability Processing Method (온톨로지 기반 데이터 가변성 처리 기법)

  • Lim, Yoon-Sun;Kim, Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.239-251
    • /
    • 2010
  • In modern distributed enterprise applications that have multilayered architecture, business entities are a kind of crosscutting concerns running through service components that implements business logic in each layer. When business entities are modified, service components related to them should also be modified so that they can deal with those business entities with new types, even though their functionality remains the same. Our previous paper proposed what we call the DTT (Data Type-Tolerant) component model to efficiently process the variability of business entities, which are data externalized from service components. While the DTT component model, by removing direct coupling between service components and business entities, exempts the need to rewrite service components when business entities are modified, it incurs the burden of implementing data type converters that mediate between them. To solve this problem, this paper proposes a method to use ontology as the metadata of both SCDTs (Self-Contained Data Types) in service components and business entities, and a method to generate data type converter code using the ontology. This ontology-based DTT component model greatly enhances the reusability of service components and the efficiency in processing data variability by allowing the computer to automatically generate data type converters without error.

The Study of Comparison on Rapping Force on Generation of Corona Discharge Electrode of Electrostatic Precipitator (전기집진장치의 코로나 전류 발생 전극 제작에 따른 추타력 비교에 관한 연구)

  • Lee, Kang-Wuk;Park, Jeong-Ho;Jang, Seong-Ho;Lim, Woo-Taik;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.231-238
    • /
    • 2017
  • Rapid industrial development has led to a serious problem of pollution in the industrial sector. With the increasing social need for environmental protection, research on air pollution prevention equipment for reducing pollutants in industrial processes is actively being undertaken. The deterioration of existent, installed facilities, their increased emission rates, and the strengthening of the effluent quality standards make complying with permissible emission standards difficult. In fact, installing new electric precipitators or complementing existent facilities is inevitable. The expansion and complementation of the installed electrical precipitators have led to improvements in dust collection efficiency, shorter working times, and lower costs. Because of its easy installation and simple manufacturing process, the production method with the discharge electrode of an electric precipitator is widely used. The following conclusions were reached by classifying discharge electrodes into four types based on the production method and mutually comparing them by their dust collection efficiency. None of the four types used in this study were damaged by impact. However, we were able to confirm some strain from the compression sites of both type A and type B. Both type B and type C are expected to have greater dust collection efficiencies than the other models due to their large vibration transmissibility. Moreover, the high vibrational energy is expected to cause rapping damage during its operation. Particularly, in the case of type B, some of the strain was found at the end of the compression site. The coupling schemes of both type C and type D are out of vibration transmissibility. On the other hand, the ability to maintain straightness and solidity of the side is regarded as outstanding and stable. Type D has outstanding on-site workability, considering the presence of locking, structural stability, and work conditions. From these experiments, we determined that type C is the most ideal connection method of discharge electrode, considering its construction period of renovation. Type C is inferior to type D with regard to on-site workability. However, type C has outstanding dedusting transmission with regard to the straightness, solidity maintenance, and vibration of shearing stress.

A Study on Low Power Energy Transfer Circuits of the Non Contact Method by means of Solar Generation (태양광 발전에 의한 비접촉 방식 저 전력 에너지 전송회로에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Jong-Rae;Choi, Gi-Ho;Kim, Jin-Seon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2014
  • In this paper, it is about to non-contact wireless power transmission according to various conditions of self induction principle between the two planar coils at a transmission unit and a receiving unit based on the theory of wireless power transmission. The experiments are occurred in order to power transfer of noncontact method from designed wireless circuits in the primely coil and secondary coil, and the applying to Half Bridge Resonant converter transmission unit and receiving unit. and that were able to prepared circumstance to calculate of the output voltage and power source. The main power of the inductive coupling the resonant converter at the transmission unit is converted electrical energy using the solar cell module and artificial light source (halogen lamp) as a replace light and received 24 V power supply from solar power was used a input power source for the wireless power transmission device. Experimental results, to received of power is used to illuminate the lighting and to charge the battery in receiving circuit.And the wireless power transmission efficiency measured at the output side of the transmission unit is obtained about 70% to 89% compared to input power of receiving unit.In addition, efficiency were tested through ID verification method and comparing the phase difference between the voltage when foreign substances interfere with wireless power transmission.

Capacitively-coupled Resistivity Method - Applicability and Limitation (비접지식 전기비저항 탐사 - 적용성과 한계)

  • Lee Seong Kon;Cho Seong-Jun;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • Capacitively-coupled resistivity (CCR) system is known to be very useful where galvanic contact to earth is impossible, such as the area covered with thick ice, snow, concrete or asphalt. This system injects current non-galvanically, i.e., capacitively to earth through line antenna and measures potential difference in a same manner. We derived geometric factor for two types of antenna configuration and presented the method of processing and converting the data obtained with CCR system suitable to conventional resistivity inversion analysis. The CCR system, however, has limitations on use at conductive area or electrically noisy area since it is very difficult to inject sufficient current to earth with this system as with conventional resistivity system. This causes low SM ratio when acquiring data with CCR system and great care must be taken in acquiring data with this system. Additionally the uniform contact between line antennas and earth is also crucial factor to obtain good S/N ratio data. The CCR method, however, enables one to perform continuous profiling over a survey line by dragging entire system and thus will be useful in rapid investigation of conductivity distribution in shallow subsurface.

Verification of Linear FE Model for Nonlinear SSI Analysis by Boundary Reaction Method (경계반력법에 의한 비선형 SSI 해석을 위한 선형 FE 해석모델 검증)

  • Lee, Gye Hee;Hong, Kwan Young;Lee, Eun Haeng;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • In this paper, a coupling scheme for applying finite element analysis(FEA) programs, such as, LS-DYNA and MIDAS/Civil, to a nonlinear soil structure interaction analysis by the boundary reaction method(BRM) is presented. With the FEA programs, the structure and soil media are discretized by linear or nonlinear finite elements. To absorb the outgoing elastic waves to unbounded soil region as much as possible, the PML elements and viscous-spring elements are used at the outer FE boundary, in the LS-DYNA model and in MIDAS/Civil model, respectively. It is also assumed that all the nonlinear elements in the problem are limited to structural region. In this study, the boundary reaction forces for the use in the BRM are calculated using the KIESSI-3D program by solving soil-foundation interaction problem subjected to incident seismic waves. The effectiveness of the proposed approach is demonstrated with a linear SSI seismic analysis problem by comparing the BRM solution with the conventional SSI solution. Numerical comparison indicates that the BRM can effectively be applied to a nonlinear soil-structure analysis if motions at the foundation obtained by the BRM for a linear SSI problem excluding the nonlinear structure is conservative.

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.

A Study on the Fabrication LiNbO3 Optical Waveguide (LiNbO3 광도파로 제작에 관한 연구)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6221-6226
    • /
    • 2015
  • In this paper, waveguide analysis was interpreted as an optical waveguide using the feedback perturbation method simple and easy to apply compared to the analysis method, while the other almost identical to the numerical calculation method. In addition, efficient coupling with an optical transmission line of optical fiber and the waveguide form the thin film of different functional elements is required in order to achieve the full optical communication system. However, problems arise, such as the light field (field) and the decrease of the access efficiency due to inconsistency in the distribution characteristics of the connection surface by the difference in size of the cross section thereof when connecting the optical fiber and the waveguide directly to the combination of a thin film. Therefore propose a new type of connector structure to increase the efficiency of the connection when connecting the optical fiber waveguide and the thin film was analyzed by applying a coupled mode theory, the binding efficiency of the modified contactor. And by diffusing Ti on the $LiNbO_3$ substrate and a wide range of applications in the manufacture of integrated optical material made of a current low-loss Ti: $LiNbO_3$ optical waveguide and making the Y-branch waveguide, and the properties were confirmed.

The study of growth and characterization of $AgInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)에 의한 $AgInSe_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.197-206
    • /
    • 1999
  • The stochiometric mixture of evaporating materials for the $AgInSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the $AgInSe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $C_0$ were 6.092 $\AA$ and 11.688 $\AA$, respectively. To obtain the single crystal thin films of AgInSe$_2$, the mixed crystal was deposited on thoroughly etched semi-insulator GaAs(100) substrate by HWE system. The source and substrate temperature were fixed to $610^{\circ}C$ and $450^{\circ}C$ respectively, and the thickness of the single thin films was obtained to 3.8 $\mu\textrm{m}$. The crystallization of single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray dirrfaction (DCXD). The Hall effect was measured by the method of van der Pauw and carrier density and mobility dependence on temperature were studied. The carrier density and mobility of $AgInSe_2$single crystal thin films deduced from Hall data are $9.58{\times}10^{22} electron/m^3,\; 3.42{\times}10^{-2}m^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $AgInSe_2$single crystal thin film, the spin orbit coupling $\Delta$So and the crystal field splitting $\Delta$Cr were obtained to 0.29 eV and 0.12 eV at 20 K respectively. From PL peaks measured at 20 K, 881.1 nm (1.4071 eV) and 882.4 nm (1.4051 eV) mean $E_x^U$ the upper polariton and $E_x^L$ the lower polariton of the free exciton $(E_x)$, also 884.1 nm (1.402 eV) express $I_2 peak of donor-bound exciton emission and 885.9 nm (1.3995 Ev) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 887.5 nm (1.3970 eV) was analyzed to be PL peak due to DAP.

  • PDF

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF

The study of growth and characterization of CuGaTe$_2$single crystal thin films by hot wall epitaxy (Hot wall epitaxy(HWE) 방법에 의한 CuGaTe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;이관교;이상열;유상하;정준우;정경아;백형원;방진주;신영진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.425-433
    • /
    • 2000
  • The stochiometric mix of evaporating materials for the $CuGaTe_2$single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuGaTe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0 and c_0$ were 6.025 $\AA$ and 11.931 $\AA$, respectively. To obtain the single crystal thin films, $CuGaTe_2$mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $670^{\circ}C$ and $410^{\circ}C$ respectively, and the thickness of the single crystal thin films is 2.1$\mu\textrm{m}$. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of $CuGaTe_2$single crystal thin films deduced from Hall data are $8.72{\times}10{23}$$\textrm m^3$, $3.42{\times}10^{-2}$ $\textrm m^2$/V.s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuGaTe_2$single crystal thin film, we have found that the values of spin orbit coupling $\Delta$s.o and the crystal field splitting $\Delta$cr were 0.0791 eV and 0.2463 eV at 10 K, respectively. From the PL spectra at 10 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470 eV and the dissipation energy of the donor-bound exciton and acceptor-bound exciton to be 0.0490 eV, 0.0558 eV, respectively.

  • PDF