The study of growth and characterization of CuGaTe$_2$single crystal thin films by hot wall epitaxy

Hot wall epitaxy(HWE) 방법에 의한 CuGaTe$_2$단결정 박막 성장과 특성에 관한 연구

  • Published : 2000.12.01

Abstract

The stochiometric mix of evaporating materials for the $CuGaTe_2$single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuGaTe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0 and c_0$ were 6.025 $\AA$ and 11.931 $\AA$, respectively. To obtain the single crystal thin films, $CuGaTe_2$mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $670^{\circ}C$ and $410^{\circ}C$ respectively, and the thickness of the single crystal thin films is 2.1$\mu\textrm{m}$. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of $CuGaTe_2$single crystal thin films deduced from Hall data are $8.72{\times}10{23}$$\textrm m^3$, $3.42{\times}10^{-2}$ $\textrm m^2$/V.s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuGaTe_2$single crystal thin film, we have found that the values of spin orbit coupling $\Delta$s.o and the crystal field splitting $\Delta$cr were 0.0791 eV and 0.2463 eV at 10 K, respectively. From the PL spectra at 10 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470 eV and the dissipation energy of the donor-bound exciton and acceptor-bound exciton to be 0.0490 eV, 0.0558 eV, respectively.

수평 전기로에서 $CuGaTe_2$다결정을 합성하여 HWE 방법으로 $CuGaTe_2$단결정 박막을 반절연성 GaAs (100) 위에 성장하였다. $CuGaTe_2$단결정 박막은 증발원과 기판의 온도를 각각 $670^{\circ}C$, $410^{\circ}C$로 성장하였다. 이때 단결정 박막의 결정성이 10K에서 측정한 광발광 스펙트럼은 954.5 nm(1.2989 eV) 근처에서 exciton emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중결정 X-선 요동곡선(DCRC)의 반폭치(FWHM)도 139arcsec로 가장 작게 측정되어 최적 성장 조건임을 알 수 있었다. Hall효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293 K에서 각각 $8.72{\times}10{23}$$\textrm m^3$, $3.42{\times}10^{-2}$ $\textrm m^2$/V.s였다. 상온에서 $CuGaTe_2$단결정 박막의 광흡수 특성으로부터 에너지 띠간격이 1.22 eV였다. Bandedge에 해당하는 광전도도 peak의 온도 의존성은 varshni 관계식으로 설명되었으며, varshni 관계식의 상수값은 $E_g$(0) = 1.3982 eV, $\alpha$ = $4.27{\times}10^{-4}$eV/K, $\beta$ = 265.5K로 주어졌다. $CuGaTe_2$단결정 박막의 광전류 단파장대 봉우리들로부터 10K에서 측정된$\Delta$cr(crystal field splitting)은 0.0791 eV, $\Delta$s.o(spin orbit coupling)는 0.2463 eV였다. 10K에서 광발광 봉우리의 919.8nm(1.3479 eV) free exciton($E_x$), 954.5nm(1.2989 eV)는 donor-bound exciton 인 $I_2(D^0,X)$와 959.5nm(1.2921 eV)는 acceptor-bound exciton 인 $I_1(A_0, X)$이고, 964.6nm(1.2853 eV)는 donor-acceptor pair(DAP) 발광, 1341.9nm(0.9239 eV)는 self activated(SA)에 기인하는 광발광 봉우리로 고찰되었다.

Keywords

References

  1. Thin Silid Films v.61 no.13 H. Neuman;W. Horig;E. Reccius;H. Sobotta
  2. Solid State Commun. v.36 no.181 W. Horig;H. Neumann;I. Godmanis
  3. Phys. Status. Solidi(a) v.52 no.559 H. Neuman;D. Peters;B. Schumann;G. Kuhn
  4. Phys. Lett. v.78A no.189 W. Horig;H. Neumann;V. Savalev;J. Lagzdonis
  5. Phys. Status Solid(a) v.71 no.505 K. Bohmhammel;P. Deus;G. Kuhn;W. Moller
  6. Ternary chalaopyrite Semiconductor: Growth, Electronic, Properties and Application J.L. Shay;J.H. Wernick
  7. Phys. Rev. v.B6 no.3008 B. Tell;H.M. Kasper
  8. J. Appl. Phys. v.45 no.3694 P.W. Yu;J. Manthuruthil;Y.S. Park
  9. J. Crystal Growth v.24;25 no.386 P. Korczak;C.B. Staff
  10. J. Vac. Soc. Technol. v.15 no.353 A. Smith
  11. J. Appl. Phys. v.69 no.2143 J. Arias;M. Zandman;J.G. Pasko;S.H. Shin;L.D. Bubulac;R.E. Dewanes;W.E. Tennart
  12. Thin Solids Films v.10 no.355 K.K. Muravyeva;I.P.K. Kinm;V.B. Aleakvsky;I.N. Anikin
  13. Thin Solid Films v.9 no.409 J.T. Calow;D.L. Kirr;S.J.T. Owen
  14. Elements of X-ray Diffractions B.D. Cullity
  15. J. Appl. Crystallogr v.16 no.576 Grzeta-Plenkovic;B. Santic
  16. J. Phys. Soc. v.20 no.109 H. Fujita
  17. Optical Process in Semiconductor v.36 J.I. Pankov
  18. Thin Solid Films v.61 no.13 H. Neumann;W. Horig;E. Reccius;H. Sobotta;B. Schumann;G. Kuhn
  19. Physica v.34 no.149 Y.P. Varshni