• Title/Summary/Keyword: coupling beam

Search Result 491, Processing Time 0.029 seconds

A design and fabrication of active phased array antenna for beam scanning using injection-locking coupled oscillators (Injection-Locking Coupled Oscillators를 이용한 빔 주사 용 능동 위상배열안테나의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1622-1631
    • /
    • 1997
  • A 3-stages Active Microstrip Phased Array Antenn(AMPAA) is implemented using Injection-Locking Coupled Oscillators(ILCO). The AMPAA is a beam scanning active antenna with capability of electrical scanning by frequency varation of ILCO. The synchronization of resonance frequencies in array elements is occured by ILCO, and the ILCO amplifies the injection signal and functions as a phase shifter. The microstrip ptch is operated as a radiation element. The unilateral amplifier is a mutual coupling element of AMPAA, eliminates the reverse locking signal and controls the locking bandwidth of ILCO. The possibility of Monolithic Microwave Integrated Circuits(MMIC) of T/R module is proposed by simplified and integrated fabrication process of AMPAA. The 0.75.$lambda_{0}$ is fixed for a mutual coupling space to wide the scanning angle and minimize the multi-mode. The AMPAA has beam scanning angle of 31.4.deg., HPBW(Half Power Beam Widths) of 26.deg., directive gain of 13.64dB and side lobe of -16.5dB were measured, respectively.

  • PDF

Ductility Demand of Precast Coupled Shear Wall (프리캐스트 병렬 전단벽의 연성도 해석)

  • 홍성걸;김영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.29-40
    • /
    • 1999
  • This study presents a simplifled calculation method for required ductility of coupling beams in precast coupled shear walls at preliminary seismic design stages. Deflection of precast coupled shear walls based on a continuum approach is combined with inelastic gap opening of horizontal connection of panels to provide a relationship between the system-level ductility and the element-level ductility in a precast coupled shear wall. The equation proposed herein for ductility requirement for coupling beams shows that higher stiffness and lower strength of coupling beams result in high ductility reuqirement. The equation also shows that the ductility requirement is proportional to the degree of gap opening of the story in question. However, the coupling beam ductility in higher stories are not affected by gap openings of horizontal connections of panel.

  • PDF

Comparison analyzation of Calculation Equations for Shear strength of Steel Plate Coupling Beam (철골 플레이트 커플링보의 전단강도에 대한 기준식의 비교.분석)

  • Lee, Kyung-Hwun;Song, Han-Beom;Park, Jin-Young;Yi, Waon-Ho;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.129-132
    • /
    • 2008
  • Coupled shear wall system is the primary seismic load resisting system of buildings. The coupling beam of these buildings must exhibit excellent ductility and energy dissipation capacity. To achieve better ductility and energy dissipation, the steel coupling beam embedded in the reinforced concrete walls is proposed. Performance of the steel coupling beam is mainly effected by embedment length. ACI equation and BS equation were examined with 23 previous test results. The statistical study uses the values of mean value, standard deviation, correlation coefficient, normal distribution curve, and error analysis. Through the analytical program, the evaluation of the 2 equations was established.

  • PDF

Development of Photothermal Mirage Technique for Measuring Thermal Diffusivity (열확산도 측정을 위한 광열 신기루 기법 개발)

  • Choi, Sun-Rock;Lee, Joo-Chul;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1220-1228
    • /
    • 2003
  • The mirage technique is proved to be powerful in measuring the thermal diffusivity of materials. In particular, its contactless nature makes it suitable for delicate samples and microscale structures. In this study, thermal-wave-coupling method is developed in a general form for both thermally thin and thick samples. In the suggested measuring scheme, the probe beam can be positioned close to the pump beam and the absolute position need not be measured. Therefore the new scheme provides a relatively simple yet effective way to determine the thermal diffusivity of thermally thick samples. Thermal diffusivities of bulk samples like Ni and Al were measured and the characteristics of mirage signal for a thin film were observed by using the mirage experimental setup. The apparent thermal diffusivity was measured by varying such parameters as probe beam height, size of pump beam, power of pump beam, and surface condition of sample. From the practical standpoint, it is shown that the size of the pump beam is the most important factor for accurate thermaldiffusivity measurement. Experiments using thin-film samples show that the thermal diffusivity of a substrate covered with thin film can be measured by photothermal mirage signals.

Investigation of the link beam length of a coupled steel plate shear wall

  • Gholhaki, M.;Ghadaksaz, M.B.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.107-125
    • /
    • 2016
  • Steel shear wall system has been used in recent years in tall buildings due to its appropriate behavior advantages such as stiffness, high strength, economic feasibility and high energy absorption capability. Coupled steel plate shear walls consist of two steel shear walls that are connected to each other by steel link beam at each floor level. In this article the frames of 3, 10, and 15 of (C-SPSW) floor with rigid connection were considered in three different lengths of 1.25, 2.5 and 3.75 meters and link beams with plastic section modulus of 100% to the panel beam at each floor level and analyzed using three pairs of accelerograms based on nonlinear dynamic analysis through ABAQUS software and then the performance of walls and link beams at base shear, drift, the period of structure, degree of coupling (DC) and dissipated energy evaluated. The results show that the (C-SPSW) system base shear increases with a decrease in the link beam length, and the drift, main period and dissipated energy of structure decreases. Also the link beam length has different effects on parameters of coupling degrees.

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

Experimental Study on Dynamic Characteristics of Structurally Tailored Isotropic Box Beams (강성재단 된 등방성 박스보의 동적 특성에 관한 실험적 연구)

  • Kim, Kyoung-Duck;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.641-648
    • /
    • 2013
  • A beam is a major load-carrying member in many engineering structures. Beams with properly designed cross sections and stiffeners are required to enhance the structural properties. Such a design may cause various coupling behaviors, and therefore, an accurate analysis is essential for the proper design of beams. In this research, we manufactured box-beams with stiffeners, which mimic the out-of-plane composite bending-shear coupling behavior reported in literature. A modal test is carried out to obtain the dynamic characteristics, such as natural frequencies and mode shapes, of the box-beam. The obtained results are compared with those of 3D FEM, which confirm that the out-of-plane bending-shear coupling behavior reported in literature is possible. The coupling behavior can be controlled by the proper design of the stiffeners.

Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices

  • Ha, S.-K.;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.245-249
    • /
    • 2015
  • Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.

Structural Performance Evaluations of Steel Hysteretic Damper in Series for High-Rise Shear Wall System (고층 전단벽시스템 적용을 위한 직렬 연결형 강재이력댐퍼의 구조성능평가)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.371-382
    • /
    • 2012
  • Existing shear wall system may cause ductility fallen to the structure which it is on because relatively weak concrete core would easy to be damaged. In this study, steel hysteresis dampers whose stiffness is higher than existing coupling beam and whose strength is easy to change depending on design load was used in coupling beam. The steel hysteresis damper was proposed for the shape connected in double in series, from this, several static test were conducted to verify structural performance of the damper. FEM analysis was also performed, then design equation were suggested.

Analysis of electro-optic polymer digital optical switch with a coupling region modified for optimum mode coupling (최적의 모드 결합을 얻기 위해 수정된 결합 영역을 갖는 전기광학 폴리머 디지탈 광스위치의 해석)

  • 이상신;신상영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.87-93
    • /
    • 1997
  • An electro-optic polymer digital optical switch with a coupling region modified for optimum mode coupling is proposed, and it is analyzed by using the beam propagation method combined with the effective index method. Its modified coupling region is adiabatically introduced along the propagation direction from the branching point of the two waveguides. The structure of the modified coupling region and its refractive index profiles are designed to optimize the mode coupling in the Y-branch waveguide. Therefor, the switching performance of the device may be enhanced with a fixed device length. It is confirmed from the numerical calculation that the drive voltage is reduced by more than 30 percents and te crosstalk is improved by about 8dB.

  • PDF