• Title/Summary/Keyword: coupled stokes equations

Search Result 141, Processing Time 0.023 seconds

Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.199-218
    • /
    • 2019
  • This paper studies the forced vibration of the hydro-elastic system consisting of the anisotropic (orthotropic) plate, compressible viscous fluid and rigid wall within the scope of the exact equations and relations of elastodynamics for anisotropic bodies for describing of the plate motion, and with utilizing the linearized exact Navier-Stokes equations for describing of the fluid flow. For solution of the corresponding boundary value problem it is employed time-harmonic presentation of the sought values with respect to time and the Fourier transform with respect to the space coordinate on the coordinate axis directed along the plate length. Numerical results on the pressure acting on the interface plane between the plate and fluid are presented and discussed. The main aim in this discussion is focused on the study of the influence of the plate material anisotropy on the frequency response of the mentioned pressure. In particular, it is established that under fixed values of the shear modulus of the plate material a decrease in the values of the modulus of elasticity of the plate material in the direction of plate length causes to increase of the absolute values of the interface pressure. The numerical results are presented not only for the viscous fluid case but also for the inviscid fluid case.

The Effect of Slip on the Convective Instability Characteristics of the Stagnation Point Flow Over a Rough Rotating Disk

  • Mukherjee, Dip;Sahoo, Bikash
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.831-843
    • /
    • 2021
  • In this paper we look at the three dimensional stagnation point flow problem over a rough rotating disk. We study the theoretical behaviour of the stagnation point flow, or forced flow, in the presence of a slip factor in which convective instability stationary modes appear. We make a numerical investigation of the effects of slip on the behaviour of the flow components of the stagnation point flow where the disk is rough. We provide, for the first time in the literature, a complete convective instability analysis and an energy analysis. Suitable similarity transformations are used to reduce the Navier-Stokes equations and the continuity equation into a system of highly non-linear coupled ordinary differential equations, and these are solved numerically subject to suitable boundary conditions using the bvp4c function of MATLAB. The convective instability analysis and the energy analysis are performed using the Chebyshev spectral method in order to obtain the neutral curves and the energy bars. We observe that the roughness of the disk has a destabilising effect on both Type-I and Type-II instability modes. The results obtained will be prominently treated as benchmarks for our future studies on stagnation flow.

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

Numerical Analysis for the Conjugate Heat Transfer of Skin Under Various Temperature Conditions of Contrast Therapy (냉온 자극의 다양한 온도경계조건들에 대한 피부 내 온도 분포의 수치해석)

  • Park, Da Ae;Oh, Han Nah;Jeon, Byoung Jin;Kim, Eun Jeong;Lee, Seung Deok;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.897-903
    • /
    • 2015
  • In this paper, the contrast therapy of skin was numerically investigated by solving the conjugate heat transfer problem. A finite volume method based on the SIMPLE algorithm was adopted to solve the axisymmetric incompressible Navier-Stokes equations, coupled with an energy equation. These equations are strongly coupled with the Pennes bio-heat equation in order to consider the effect of blood perfusion rate. We investigated the thermal response of skin at some selected depths for various input temperature profiles of a stimulator for contrast therapy. From the numerical simulations, the regions with cold/hot threshold temperatures were found for five input temperature profiles. It was shown that the temperature varies mildly for different input profiles as the depth increases, owing to the Pennes effect. The input temperatures for effective hot/cold stimulation of dermis layer were found to be $47^{\circ}C$ and $7^{\circ}C$, respectively. The present numerical results will be used for finding an optimal temperature profile of a stimulator for contrast therapy.

Effect of Bifurcation Angle on Blood Flow in Flexible Carotid Artery (유연한 경동맥 분지관에서 분지각이 혈액의 유동에 미치는 영향에 관한 연구)

  • Lee, Sang Hoon;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.229-235
    • /
    • 2013
  • To investigate the effect of the flexible artery wall on the blood flow, three-dimensional numerical simulations were carried out for analyzing the time-dependent incompressible flows of Newtonian fluids constrained by a flexible wall. The Navier-Stokes equations for fluid flow were solved using the P2P1 Galerkin finite element method, and mesh movement was achieved using an arbitrary Lagrangian-Eulerian formulation. The Newmark method was employed for solving the dynamic equilibrium equations for the deformation of a linear elastic solid. To avoid complexity due to the necessity of additional mechanical constraints, we used a combined formulation that includes both the fluid and structure equations of motion to produce a single coupled variational equation. The results showed that the flexibility of the carotid wall significantly affects flow phenomena during the pulse cycle. The flow field was also found to be strongly influenced by the bifurcation angle.

Nonlinear Interaction among Wave, Current and Submerged Breakwater (파랑-흐름-잠제의 비선형 상호간섭 해석)

  • Park, Su-Ho;Lee, Jung-Hoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1037-1048
    • /
    • 2016
  • In this study, nonlinear wave interaction in the presence of a uniform current is studied using numerical model, named CADMAS-SURF which is based on the Navier-Stokes equations coupled with Volume of Fluid for tracking free surface deformation. The original CADMAS-SURF developed for interaction of wave with structure is modified/extended to simulate nonlinear fluid dynamic motions within wave-current coexisting field. The capability of Numerical Wave-Current Tank (NWCT) in this study is validated by comparing with available existing laboratory experiments for both wave-following and wave-opposing current. The numerical results for interaction between wave and current are shown to be in good agreement with experimental data. Then, this study focused on the dynamic motions of the water velocity, surface elevation and vorticity within combined wave-current field in demonstrating complex nonlinear physical phenomena due to interaction between wave and current. In addition, NWCT is applied to simulate a more complex wave-current-structure field for wave propagating over a submerged breakwater associated with current. Detailed discussion including characteristics of velocity and vorticity fields and the relation between free surface and vorticity are given.

Comparison of the Effects of Straight and Twisted Heat Trace Installations Based on Three-dimensional Unsteady Heat Transfer (열선의 직선시공과 감기시공의 동파방지 효과 비교를 위한 3차원 비정상 수치해석)

  • Choi, Myoung-Young;Jeon, Byoung-Jin;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • This paper numerically examines, straight and twisted electrical heat trace installations for their anti-freezing effects on water inside a pipe. The unsteady incompressible Navier-Stokes equations coupled with an energy equation were solved to compare the two installation methods. The heat conduction of the pipe with a heat source interacts with the natural convection of the water, and the conjugate heat transfer was considered using a commercial code (ANSYS-FLUENT) based on a SIMPLE-type algorithm. Numerical experiments, were done to investigate the isotherms and the vector fields in the water region to extract the evolutions of the minimum and maximum temperatures of the water inside the pipe. There was no substantial difference in the anti-freezing effects between the straight and twisted. Therefore, the straight installation is recommended after considering the damage and short circuit behavior of the electrical heat trace.

Papers : Analysis of Supersonic Rocket Plume Flowfield with Finite - Rate Chemical Reactions (논문 : 유한속도 화학반응을 고려한 초음속 로켓의 플룸 유동장 해석)

  • Choe,Hwan-Seok;Mun,Yun-Wan;Choe,Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.114-123
    • /
    • 2002
  • A supersonic rocket plum flowfield of kerosene/liquid-oxygen based propulsion system has been analysed using the Reynolds-averaged Navier-Stokes equations coupled with a 9-species 14-reaction finite-chemistry model. The result were compared with chemically frozen flow solution to investigate the effect of finite-rate chemistry on the plume flowfield. The computations were performed using a commercial CFD software, FLUENT 5. The finite-rate chemistry solution exhibited higher temperature caused by the reactions within the nozzle. All the chemical reactions within the plum were dominated only in the shear layer and behind the barrel shock reflection region where the temperatures are high and the effect of finite-rate chemical reactions on the flowfield was found to be insignificant. However, the present plume computation including the finite-rate chemical reaction within the plume has revealed major reactions occurring in the plum and their reaction mechanisms.

A Static Fluid-Structure Interaction Analysis System Based on the Navier-Stokes Equations for the Prediction of Aerodynamic Characteristics of Aircraft (항공기 공력특성 예측을 위한 Navier-Stokes 방정식 기반의 정적 유체-구조 연계 해석 시스템)

  • Jung, Sun-Ki;Anh Duong, Hoang;Lee, Young-Min;Lee, Jin-Hee;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.532-540
    • /
    • 2008
  • Recently there are growing interests in calculating aerodynamic characteristics of aircraft configurations with structural deformation using the FSI(Fluid-Structure Interaction) system in which CFD(Computational Fluid Dynamics) and CSD(Computational Structure Dynamics) modules are coupled. In this paper the FSI system comprised of CAD, CFD, CSD, VSI(Volume Spline Interpolation) and grid deformation modules was constructed in order to investigate aerodynamic characteristics of the deformed shape. In the process VSI and grid generation modules are developed to combine CSD and CFD routines and to regenerate the aerodynamic grids for the deformed shape, respectively. For the CFD and CSD analysis, commercial programs FLUENT and NASTRAN were used. As a test model, DLR-F4 wing configuration was chosen and its aerodynamic characteristics were calculated by applying the static FSI system. It was shown that lift and drag coefficients of the wing at mach number 0.75 are reduced to 20.26% and 18.5%, respectively, owing to the structural deformation.