• Title/Summary/Keyword: coupled model

Search Result 2,688, Processing Time 0.027 seconds

An Assessment of Coastal Area Using Geographic Information Systems and Multi-Criteria Analysis (지리정보시스템(GIS)과 다기준 분석법(MCA)을 적용한 연안지역 평가)

  • Choi, Hee-Jung;Park, Jung-Jae;Hwang, Chul-Sue
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.2
    • /
    • pp.143-155
    • /
    • 2007
  • There are many conflicts or interests among various stakeholders on the development of the coastal area. The integrated methodology, which is reflective of physical conditions, socio-economic circumstances, and people's sense of values, is thus needed to solve the problems. In this study, geographical information systems(GIS) and analytic hierarchy process(AHP) that arc one of multi-criteria analysis methodologies are loosely coupled to develop better analytic procedures for coastal assessment. Socio-economic and environmental parameters of the study area, Hampyung Bay area, are converted to a GIS system-applicable format, while AHP is used to assess the relative importance level of each parameter by calculating weighting factors. After standardizing and rasterizing spatial data from various sources. the weighting factors are applied to produce the layers for each parameter. Map algebra and overlay analyses are used to create the final layer according to the decision making logic or model proposed here. Cell values of that layer could be considered as spatial alternatives. In addition to this finding, the flexibility with the weighing factors enable decision-makers to understand the procedures and alternatives in relevance with selective strategies for coastal management.

  • PDF

An Efficient Method of Transaction Process for EAI(Enterprise Application Integration) and Web Service (EAI(Enterprise Application Integration)와 Web Service 환경에서 트랜잭션의 효율적인 처리 방안)

  • Jung, Ji-Ho;Yoon, Chung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.435-442
    • /
    • 2004
  • It is important to integrate an enterprise application for automating of the business process, which is responded by a flow of market environment. There are two categories of method that integrate enterprise applications. One is Synchronous Integration, and the other is Asynchronous Integration. EAI(Enterprise Application Integration) and Web service which of the asynchronous integration is focused in the automating method of the business process. After we construct the application integration for automating of the business process, we have to concern about managing of the business transaction. Many Organizations have proposed the process method of business transaction based on 2-phase commit protocol. But this method can't supply the phase that classify the transaction by transaction weight. In this paper, we propose an efficient method of transaction process for business transactions, which is composed by "Classify Phase" that classify transactions. We called this model "3-Phase Commit Method Applied by Classify Phase, " we design this model to manage an resource of enterprise efficiently. The proposed method is compared by the method based on 2-Phase commit that could be a problem of management the resource of enterprise, and the advantage of this method is certified to propose the solution of that problem.ion of that problem.

Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head (해상풍력발전기 기초구조물의 강성이 모노파일 두부의 부재력 및 변위에 미치는 영향)

  • Jung, Sungmoon;Kim, Sung-Ryul;Lee, Juhyung;Le, Chi Hung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.21-31
    • /
    • 2014
  • Recently, the research on renewable energy against depletion of fossil fuel have been actively carried out in the world. Especially, offshore wind turbines are very economical and innovative technology. However, offshore wind turbines experience large base moments due to the wind and wave loading, so the monopile with large diameter needs to be applied. For the economical design of the large diameter pile, it is important to consider the flexibility of the foundation to estimate the maximum moment accurately, based on studies conducted so far. In this paper, the foundation was modeled using the finite element method in order to better describe the large diameter effect of a monopile and the results were compared with those of p-y method. For the examples studied in this paper, the change in maximum moment was insignificant, but the maximum tilt angle from the finite element method was over 14% larger than that of p-y method. Therefore, the finite element approach is recommended to model the flexibility effect of the pile when large tilt angles may cause serviceability issues.

Setting limits for water use in the Wairarapa Valley, New Zealand

  • Mike, Thompson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.227-227
    • /
    • 2015
  • The Wairarapa Valley occupies a predominantly rural area in the lower North Island of New Zealand. It supports a mix of intensive farming (dairy), dry stock farming (sheep and beef cattle) and horticulture (including wine grapes). The valley floor is traversed by the Ruamahanga River, the largest river in the Wellington region with a total catchment area of 3,430 km2. Environmental, cultural and recreational values associated with this Ruamahanga River are very high. The alluvial gravel and sand aquifers of the Wairarapa Valley, support productive groundwater aquifers at depths of up to 100 metres below ground while the Ruamahanga River and its tributaries present a further source of water for users. Water is allocated to users via resource consents by Greater Wellington Regional Council (GWRC). With intensifying land use, demand from the surface and groundwater resources of the Wairarapa Valley has increased substantially in recent times and careful management is needed to ensure values are maintained. This paper describes the approach being taken to manage water resources in the Wairarapa Valley and redefine appropriate limits of sustainable water use. There are three key parts: Quantifying the groundwater resource. A FEFLOW numerical groundwater flow model was developed by GWRC. This modelling phase provided a much improved understanding of aquifer recharge and abstraction processes. It also began to reveal the extent of hydraulic connection between aquifer and river systems and the importance of moving towards an integrated (conjunctive) approach to allocating water. Development of a conjunctive management framework. The FEFLOW model was used to quantify the stream flow depletion impacts of a range of groundwater abstraction scenarios. From this, three abstraction categories (A, B and C) that describe diminishing degrees of hydraulic connection between ground and surface water resources were mapped in 3 dimensions across the Valley. Interim allocation limits have been defined for each of 17 discrete management units within the valley based on both local scale aquifer recharge and stream flow depletion criteria but also cumulative impacts at the valley-wide scale. These allocation limits are to be further refined into agreed final limits through a community-led decision making process. Community involvement in the limit setting process. Historically in New Zealand, limits for sustainable resource use have been established primarily on the basis of 'hard science' and the decision making process has been driven by regional councils. Community involvement in limit setting processes has been through consultation rather than active participation. Recent legislation in the form of a National Policy Statement on Freshwater Management (2011) is reforming this approach. In particular, collaborative consensus-based decision making with active engagement from stakeholders is now expected. With this in mind, a committee of Wairarapa local people with a wide range of backgrounds was established in 2014. The role of this committee is to make final recommendations about resource use limits (including allocation of water) that reflect the aspirations of the communities they represent. To assist the committee in taking a holistic view it is intended that the existing numerical groundwater flow models will be coupled with with surface flow, contaminant transport, biological and economic models. This will provide the basis for assessing the likely outcomes of a range of future land use and resource limit scenarios.

  • PDF

Hierarchical Message Forwarding Scheme for Efficient Data Distribution in P2P Messaging System (P2P 출판-구독 메시징 시스템에서 효율적인 정보 전파를 위한 계층적 메시지 전송 기법)

  • Jung, Jin Sun;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.9
    • /
    • pp.209-216
    • /
    • 2019
  • Publish-subscribe communication model is popular for various type of distributed applications because of its loosely coupled style connections. Among the various architecture style for publish-subscribe system, peer-to-peer architecture has been used for the mission critical application domain since it provides high scalability and real-timeness. On the other hand, to utilize the bandwidth of given networks, message filtering is frequently used to reduce the number of messages on the system. Even if P2P provides superior scalability, it is hard to apply filtering to the its messaging system because the filtering process should be done on the peer-side in P2P architecture that are usually done on the broker server in conventional pub/sub architecture. In this paper, we propose a hierarchical subscription management structure as well as message forwarding scheme for efficient data dissemination. Our proposed scheme reduces the number of received messages by filter-out un-wanted messages and offloading the message dissemination work to other subscribers to enhance the messaging throughput.

Analysis on inundation characteristics by compound external forces in coastal areas (연안 지역의 복합 외력에 의한 침수 특성 분석)

  • Kang, Taeuk;Sun, Dongkyun;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.463-474
    • /
    • 2021
  • The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn't appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Analysis of Impacts of the Northeast Pacific Atmospheric Blocking and Contribution of Regional Transport to High-PM10 Haze Days in Korea (한국의 고농도 PM10 연무 사례일 발생에 대한 대기 블로킹의 영향과 장거리 수송 기여도 분석)

  • Jeong, Jae-Eun;Cho, Jae-Hee;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.77-90
    • /
    • 2022
  • Despite the decreasing trend of anthropogenic emissions in East Asia in recent years, haze days still frequently occur in spring. Atmospheric blocking, which occurs frequently in the northeastern Pacific, leads to persistent changes in large-scale circulation and blocks westerly flow in the East Asian region. During March 2019, frequent warm and stagnant synoptic meteorological conditions over East Asia were accompanied 6-7 days later by the Alaskan atmospheric blocking. The Alaskan atmospheric blocking over the period of March 18-24, 2019 led to high particulate matter (PM10) severe haze days exceeding a daily average of 50 ㎍ m-3 over the period of March 25-28, 2019 in South Korea. Although the high-PM10 severe haze days were caused by warm and stagnant meteorological conditions, the regional contribution of anthropogenic emissions in eastern China was calculated to be 30-40% using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The major regional contributions of PM10 aerosols in the period of high-PM10 severe haze days were as follows: nitrates, 20-25%; sulphates, 10-15%; ammonium, 5-10%; and other inorganics, 15-20%. Ammonium nitrate generated via gas-to-aerosol conversion in a warm and stagnant atmosphere largely contributed to the regional transport of PM10 aerosols in the high-PM10 severe haze days in South Korea.

An Experimental Study on the Estimation Method of Overtopping Discharge at the Rubble Mound Breakwater Using Wave-Overtopping Height (월파고를 이용한 사석경사제의 월파량 산정방법에 관한 실험적 연구)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2024
  • Wave overtopping is a significant natural hazard that occurs in coastal areas, primarily driven by high waves, particularly those generated during typhoons, which can cause coastal flooding. The development of residential and commercial areas along the coast, driven by increasing social and economic demands, has led to a concentration of people and assets in these vulnerable areas. This, coupled with long-term sea level rise and an increase in typhoon frequency, has heightened the risk of coastal hazards. Traditionally, the evaluation of wave overtopping volumes has relied on directly measuring the collected volume of water that exceeds the crest height of structures through hydraulic model experiments. These experiments are averaged over a specific measurement period. However, in this study, we propose a new method for estimating individual wave overtopping volumes. We utilize the temporal variation of wave overtopping heights to develop an observation system that can quantitatively assess wave overtopping volumes in actual coastal areas. To test our method, we conducted hydraulic model experiments on rubble mound breakwaters, which are commonly installed along the Korean coast. We introduce wave overtopping discharge coefficients, assuming that the inundation velocity from the structure's crest is the long-wave velocity. We then predict overtopping volumes based on wave overtopping heights and compare and review the results with experimental data. The findings of our study confirm the feasibility of estimating wave overtopping volumes by applying the overtopping discharge coefficients derived in this study to wave overtopping heights.

Possibilities for Improvement in Long-term Predictions of the Operational Climate Prediction System (GloSea6) for Spring by including Atmospheric Chemistry-Aerosol Interactions over East Asia (대기화학-에어로졸 연동에 따른 기후예측시스템(GloSea6)의 동아시아 봄철 예측 성능 향상 가능성)

  • Hyunggyu Song;Daeok Youn;Johan Lee;Beomcheol Shin
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.19-36
    • /
    • 2024
  • The global seasonal forecasting system version 6 (GloSea6) operated by the Korea Meteorological Administration for 1- and 3-month prediction products does not include complex atmospheric chemistry-aerosol physical processes (UKCA). In this study, low-resolution GloSea6 and GloSea6 coupled with UKCA (GloSea6-UKCA) were installed in a CentOS-based Linux cluster system, and preliminary prediction results for the spring of 2000 were examined. Low-resolution versions of GloSea6 and GloSea6-UKCA are highly needed to examine the effects of atmospheric chemistry-aerosol owing to the huge computational demand of the current high resolution GloSea6. The spatial distributions of the surface temperature and daily precipitation for April 2000 (obtained from the two model runs for the next 75 days, starting from March 1, 2000, 00Z) were compared with the ERA5 reanalysis data. The GloSea6-UKCA results were more similar to the ERA5 reanalysis data than the GloSea6 results. The surface air temperature and daily precipitation prediction results of GloSea6-UKCA for spring, particularly over East Asia, were improved by the inclusion of UKCA. Furthermore, compared with GloSea6, GloSea6-UKCA simulated improved temporal variations in the temperature and precipitation intensity during the model integration period that were more similar to the reanalysis data. This indicates that the coupling of atmospheric chemistry-aerosol processes in GloSea6 is crucial for improving the spring predictions over East Asia.