• Title/Summary/Keyword: cosmic evolution

Search Result 83, Processing Time 0.027 seconds

Identifying Cosmic Voids using Clusters as the Antipode

  • Shim, Junsup;Park, Changbom;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2019
  • We report progress on identifying cosmic voids using cluster halos as the antipode. According to the standard scenario of structure formation, clusters are expected to form at peaks of the initial density field, whereas cosmic voids form at troughs. Then, a cluster would be a void if the sign of the initial density fluctuation of the universe were inverted. To study the relevance of anti-structures of clusters to cosmic voids, we use a pair of simulations whose initial density fields are sign inverted versions to each other. By examining the spatial distribution and environment of the particles in inverted simulation, which are the member particles of clusters in the other simulation, we discuss the characteristics of the antipode structures of clusters including their size, density, internal structure, and redshift evolution as well.

  • PDF

ORIGIN AND EVOLUTION OF STRUCTURE FOR GALAXIES IN THE LOCAL GROUP

  • LAN, NGUYEN QUYNH;MATHEWS, GRANT J.;VINH, NGUYEN ANH;LAM, DOAN DUC
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.521-523
    • /
    • 2015
  • The Milky Way did not form in isolation, but is the product of a complex evolution of generations of mergers, collapses, star formation, supernovae and collisional heating, radiative and collisional cooling, and ejected nucleosynthesis. Moreover, all of this occurs in the context of the cosmic expansion, the formation of cosmic filaments, dark-matter haloes, spiral density waves, and emerging dark energy. This paper summarizes a review of recent attempts to reconstruct this complex evolution. We compare simulated properties with various observed properties of the Local Group. Among the generic features of simulated systems is the tendency for galactic halos to form within the dark matter filaments that define a supergalactic plane. Gravitational interaction along this structure leads to a streaming flow toward the two dominant galaxies in the cluster. We analyze this alignment and streaming flow and compare with the observed properties of Local-Group galaxies. Our comparison with Local Group properties suggests that some dwarf galaxies in the Local Group are part of a local streaming flow. These simulations also suggest that a significant fraction of the Galactic halo formed at large distances and arrived later along these streaming flows.

Diffusive Shock Acceleration with Self-Consistent Injection

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.293-295
    • /
    • 2001
  • A numerical scheme that incorporates a self-consistent cosmic-ray (CR, hereafter) injection model into the combined gas dynamics and CR diffusion-convection code has been developed. The hydro/CR code can follow in a very cos-effective way the evolution of CR modified shocks by adopting subzone shock-tracking and multi-level Adaptive Mesh Refinement techniques. The injection model is based on interactions of the suprathermal particles with self-generated MHD waves in quasi-parallel shocks. The particle injection is followed numerically by filtering the diffusive flux of suprathermal particles across the shock to upstream region according to a velocity-dependent transparency function, which represents the fraction of leaking suprathermal particles. In the strong shock limit of Mach numbers $\ge$20, significant physical processes such as the injection and acceleration seem to become independent of M, while they are sensitively dependent on M for M < 10. Although some particles injected early in the evolution continue to be accelerated to higher energies, the postshock CR pressure reaches a time asymptotic value due to balance between acceleration and diffusion of the CR particles.

  • PDF

The Nature of Submillimeter Galaxies in the North Ecliptic Pole SCUBA-2 Survey

  • Lee, Dongseob;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2020
  • Submillimeter galaxies (SMGs) have played an important role in the understanding of galaxy evolution and cosmic star formation history at high redshift because they are known as being located at z ~ 2 and harbor a vigorous star formation. Therefore studying properties of SMGs can lead us to understand evolution of massive and actively star forming galaxies and distribution of cosmic star formation density. Recently we detected 548 SMGs near North Ecliptic Pole with JCMT/SCUBA-2 from the JCMT large program covering about 2 deg2 so far. To derive their physical parameters, we compiled a multi-wavelength photometry ranging from optical (0.3 ㎛) to submillimeter (850 ㎛) by cross-identifying counterparts at different wavelengths. In order to find counterparts, we used either VLA-1.4 GHz image and/or Spitzer/IRAC 3.6 ㎛, 4.5 ㎛ image. The number of SMGs with relatively robust counterparts is 349. In this talk, we present photometric redshifts, stellar mass, star formation rates, total infrared luminosity, and AGN fraction of these 349 SMGs derived through SED fitting analysis.

  • PDF

Ice Surface Chemistry: Implication for Molecular Evolution in Space

  • Gang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.65.1-65.1
    • /
    • 2013
  • Icy dust particles in interstellar clouds are considered to play a catalytic role in molecular evolution in space. Atoms and simple molecules constituting the ice mantles of dust particles may be transformed into more complex molecules under the irradiation of UV and cosmic rays. This seminar will present our recent study results for chemistry of ice surfaces, with the emphases on the mechanistic features of elementary reactions and the implications for interstellar molecular evolution. The types of reactions studied include molecule diffusion in ice, proton and hydroxide transfers, and some UV-induced reactions wih astrobiological relevance.

  • PDF

COSMIC STAR FORMATION HISTORY AND AGN EVOLUTION NEAR AND FAR: AKARI REVEALS BOTH

  • Goto, Tomotsugu;AKARI NEP team, AKARI NEP team;AKARI all sky survey team, AKARI all sky survey team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.347-352
    • /
    • 2012
  • Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and $160{\mu}m$) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe $8{\mu}m$, $12{\mu}m$, and total infrared (TIR) luminosity functions (LFs) at 0.15 < z < 2.2 using 4,128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and $24{\mu}m$) by the AKARI satellite allows us to estimate restframe $8{\mu}m$ and $12{\mu}m$ luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z = 0 to z = 2.2, all probed by the AKARI satellite.

The Spatially Closed Universe

  • Park, Chan-Gyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.353-381
    • /
    • 2019
  • The general world model for homogeneous and isotropic universe has been proposed. For this purpose, we introduce a global and fiducial system of reference (world reference frame) constructed on a (4+1)-dimensional space-time, and assume that the universe is spatially a 3-dimensional hypersurface embedded in the 4-dimensional space. The simultaneity for the entire universe has been specified by the global time coordinate. We define the line element as the separation between two neighboring events on the expanding universe that are distinct in space and time, as viewed in the world reference frame. The information that determines the kinematics of the geometry of the universe such as size and expansion rate has been included in the new metric. The Einstein's field equations with the new metric imply that closed, flat, and open universes are filled with positive, zero, and negative energy, respectively. The curvature of the universe is determined by the sign of mean energy density. We have demonstrated that the flat universe is empty and stationary, equivalent to the Minkowski space-time, and that the universe with positive energy density is always spatially closed and finite. In the closed universe, the proper time of a comoving observer does not elapse uniformly as judged in the world reference frame, in which both cosmic expansion and time-varying light speeds cannot exceed the limiting speed of the special relativity. We have also reconstructed cosmic evolution histories of the closed world models that are consistent with recent astronomical observations, and derived useful formulas such as energy-momentum relation of particles, redshift, total energy in the universe, cosmic distance and time scales, and so forth. The notable feature of the spatially closed universe is that the universe started from a non-singular point in the sense that physical quantities have finite values at the initial time as judged in the world reference frame. It has also been shown that the inflation with positive acceleration at the earliest epoch is improbable.

Understanding reionization and cosmic dawn with galaxies and 21-cm

  • Park, Jaehong;Mesinger, Andrei;Greig, Bradley
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.38.3-38.3
    • /
    • 2018
  • The properties of unseen high-redshift sources (and sinks) are encoded in the 3D structure of the cosmic 21-cm signal. Here I introduce a flexible parametrization for high-z galaxies' properties, including their star formation rates, ionizing escape fraction and their evolution with the mass of the host dark matter halos. With this parametrization, I self-consistently calculate the corresponding 21-cm signal during reionization and the cosmic dawn. Using a Monte Carlo Markov Chain sampler of 3D simulations, 21CMMC, I demonstrate how combining high-z luminosity functions with a mock 21-cm signal can break degeneracies, resulting in ~ percent level constraints on early universe astrophysics.

  • PDF

NUMERICAL STUDIES OF COSMIC RAY ACCELERATION AT COSMIC SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2004
  • Shocks are ubiquitous in astrophysical environments and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration. It is believed that the CR pressure is important in the evolution of the interstellar medium of our galaxy and most of galactic CRs with energies up to ${\~}\;10^{15}$ eV are accelerated by supernova remnant shocks. In this contribution we have studied the CR acceleration at shocks through numerical simulation of 1D, quasi-parallel shocks for a wide range of shock Mach numbers and shock speeds. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies, and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that $10^{-4} - 10^{-3}$ of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number, and high Mach number shocks all evolve towards efficiencies ${\~}50\%$, regardless of the injection rate and upstream CR pressure. We conclude that the injection rates in strong quasi-parallel shocks are sufficient to lead to significant nonlinear modifications to the shock structures, implying the importance of the CR acceleration at astrophysical shocks.

Extragalactic Science I

  • Im, Myungshin;Jeong, Woong-Seob;Kim, Minjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2018
  • In this talk, we will review extragalactic science cases with NISS and SPHEREx. With its capability to perform a low resolution spectroscopy over a wide area, NISS and SPHEREx can provide valuable information about the evolution of spectral shapes of galaxies in different environments over cosmic history. This talk will focus on the cases for the studies that are closely related to the galaxy evolution and formation.

  • PDF