DOI QR코드

DOI QR Code

COSMIC STAR FORMATION HISTORY AND AGN EVOLUTION NEAR AND FAR: AKARI REVEALS BOTH

  • Goto, Tomotsugu (Cosmology Centre, Niels Bohr Institute, University of Copenhagen) ;
  • AKARI NEP team, AKARI NEP team (Cosmology Centre, Niels Bohr Institute, University of Copenhagen) ;
  • AKARI all sky survey team, AKARI all sky survey team (Cosmology Centre, Niels Bohr Institute, University of Copenhagen)
  • Received : 2012.07.06
  • Accepted : 2012.07.23
  • Published : 2012.09.16

Abstract

Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and $160{\mu}m$) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe $8{\mu}m$, $12{\mu}m$, and total infrared (TIR) luminosity functions (LFs) at 0.15 < z < 2.2 using 4,128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and $24{\mu}m$) by the AKARI satellite allows us to estimate restframe $8{\mu}m$ and $12{\mu}m$ luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z = 0 to z = 2.2, all probed by the AKARI satellite.

Keywords

References

  1. Babbedge, T. S. R., et al., 2006, Luminosity Functions for Galaxies and Quasars in the Spitzer Wide- Area Infrared Extragalactic Legacy Survey, MNRAS, 370, 1159 https://doi.org/10.1111/j.1365-2966.2006.10547.x
  2. Caputi, K. I., et al., 2007, The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z 2 in the GOODS Fields, ApJ, 660, 97 https://doi.org/10.1086/512667
  3. Chary, R. & Elbaz, D., 2001, Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-Enshrouded Star Formation Rate, ApJ, 556, 562 https://doi.org/10.1086/321609
  4. Goto, T., 2005, Optical Properties of 4248 IRAS Galaxies, MNRAS, 360, 322 https://doi.org/10.1111/j.1365-2966.2005.09036.x
  5. Goto, T., et al., 2010a, Evolution of Infrared Luminosity Functions of Galaxies in the AKARI NEPDeep Field. Revealing the Cosmic Star Formation History Hidden by Dust, A&A, 514, A6 https://doi.org/10.1051/0004-6361/200913182
  6. Goto, T., et al., 2010b, Environmental Dependence of 8 ${\mu}m$ Luminosity Functions of Galaxies at z-0.8. Comparison between RXJ1716.4+6708 and the AKARI NEP-Deep Field, A&A, 514, A7 https://doi.org/10.1051/0004-6361/200913473
  7. Goto, T., et al., 2011a, Luminosity Functions of Local Infrared Galaxies with AKARI: Implications for the Cosmic Star Formation History and AGN Evolution, MNRAS, 410, 573 https://doi.org/10.1111/j.1365-2966.2010.17466.x
  8. Goto, T., et al., 2011b, Infrared Luminosity Functions of AKARI Sloan Digital Sky Survey Galaxies, MNRAS, 414, 1903 https://doi.org/10.1111/j.1365-2966.2011.18499.x
  9. Huang, J. -S., et al., 2007, The Local Galaxy 8 ${\mu}m$ Luminosity Function, ApJ, 664, 840 https://doi.org/10.1086/519241
  10. Huynh, M. T., Frayer, D. T., Mobasher, B., Dickinson, M., Chary, R.-R., & Morrison, G., 2007, The Far-Infrared Luminosity Function from GOODSNorth: Constraining the Evolution of Infrared Galaxies for z<1, ApJ, 667, L9 https://doi.org/10.1086/521981
  11. Kauffmann, G., et al., 2003, The Host Galaxies of Active Galactic Nuclei, MNRAS, 346, 1055 https://doi.org/10.1111/j.1365-2966.2003.07154.x
  12. Kennicutt, R. C., Jr., 1998, Star Formation in Galaxies Along the Hubble Sequence, ARAA, 36, 189 https://doi.org/10.1146/annurev.astro.36.1.189
  13. Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J., 2001, Theoretical Modeling of Starburst Galaxies, ApJ, 556, 121 https://doi.org/10.1086/321545
  14. Lagache, G., Abergel, A., Boulanger, F., Desert, F. X., & Puget, J. -L., 1999, First Detection of theWarm Ionised Medium Dust Emission. Implication for the Cosmic Far-Infrared Background, A&A, 344, 322
  15. Lagache, G., Dole, H., & Puget, J. -L., 2003, Modelling Infrared Galaxy Evolution Using a Phenomenological Approach, MNRAS, 338, 555 https://doi.org/10.1046/j.1365-8711.2003.05971.x
  16. Le Floc'h, E., et al., 2005, Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0< z <1, ApJ, 632, 169 https://doi.org/10.1086/432789
  17. Magnelli, B., Elbaz, D., Chary, R. R., Dickinson, M., Le Borgne, D., Frayer, D. T., & Willmer, C. N. A., 2009, The 0.4< z <1.3 Star Formation History of the Universe as Viewed in the Far-Infrared, A&A, 496, 57 https://doi.org/10.1051/0004-6361:200811443
  18. Perault, M., 1987, Ph.D. Thesis
  19. Perez-Gonzalez, P. G., et al., 2005, Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z 3, ApJ, 630, 82 https://doi.org/10.1086/431894
  20. Rush, B., Malkan, M. A., & Spinoglio, L., 1993, The Extended 12 Micron Galaxy Sample, ApJS, 89, 1 https://doi.org/10.1086/191837
  21. Sanders, D. B., Mazzarella, J. M., Kim, D. -C., Surace, J. A., & Soifer, B. T., 2003, The IRAS Revised Bright Galaxy Sample, AJ, 126, 1607 https://doi.org/10.1086/376841
  22. Schiminovich, D., et al., 2005, The GALEX-VVDS Measurement of the Evolution of the Far- Ultraviolet Luminosity Density and the Cosmic Star Formation Rate, ApJ, 619, L47 https://doi.org/10.1086/427077
  23. Wada, T., et al., 2008, AKARI/IRC Deep Survey in the North Ecliptic Pole Region, PASJ, 60, 517
  24. Yuan, T. -T., Kewley, L. J., & Sanders, D. B., 2010, The Role of Starburst-Active Galactic Nucleus Composites in Luminous Infrared Galaxy Mergers: Insights from the New Optical Classification Scheme, ApJ, 709, 884 https://doi.org/10.1088/0004-637X/709/2/884