Browse > Article
http://dx.doi.org/10.5303/PKAS.2012.27.4.347

COSMIC STAR FORMATION HISTORY AND AGN EVOLUTION NEAR AND FAR: AKARI REVEALS BOTH  

Goto, Tomotsugu (Cosmology Centre, Niels Bohr Institute, University of Copenhagen)
AKARI NEP team, AKARI NEP team (Cosmology Centre, Niels Bohr Institute, University of Copenhagen)
AKARI all sky survey team, AKARI all sky survey team (Cosmology Centre, Niels Bohr Institute, University of Copenhagen)
Publication Information
Publications of The Korean Astronomical Society / v.27, no.4, 2012 , pp. 347-352 More about this Journal
Abstract
Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and $160{\mu}m$) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe $8{\mu}m$, $12{\mu}m$, and total infrared (TIR) luminosity functions (LFs) at 0.15 < z < 2.2 using 4,128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and $24{\mu}m$) by the AKARI satellite allows us to estimate restframe $8{\mu}m$ and $12{\mu}m$ luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z = 0 to z = 2.2, all probed by the AKARI satellite.
Keywords
infrared: telescope; conferences: proceedings;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Babbedge, T. S. R., et al., 2006, Luminosity Functions for Galaxies and Quasars in the Spitzer Wide- Area Infrared Extragalactic Legacy Survey, MNRAS, 370, 1159   DOI   ScienceOn
2 Caputi, K. I., et al., 2007, The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z 2 in the GOODS Fields, ApJ, 660, 97   DOI
3 Chary, R. & Elbaz, D., 2001, Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-Enshrouded Star Formation Rate, ApJ, 556, 562   DOI
4 Goto, T., 2005, Optical Properties of 4248 IRAS Galaxies, MNRAS, 360, 322   DOI   ScienceOn
5 Goto, T., et al., 2010a, Evolution of Infrared Luminosity Functions of Galaxies in the AKARI NEPDeep Field. Revealing the Cosmic Star Formation History Hidden by Dust, A&A, 514, A6   DOI
6 Goto, T., et al., 2010b, Environmental Dependence of 8 ${\mu}m$ Luminosity Functions of Galaxies at z-0.8. Comparison between RXJ1716.4+6708 and the AKARI NEP-Deep Field, A&A, 514, A7   DOI   ScienceOn
7 Goto, T., et al., 2011a, Luminosity Functions of Local Infrared Galaxies with AKARI: Implications for the Cosmic Star Formation History and AGN Evolution, MNRAS, 410, 573   DOI   ScienceOn
8 Goto, T., et al., 2011b, Infrared Luminosity Functions of AKARI Sloan Digital Sky Survey Galaxies, MNRAS, 414, 1903   DOI   ScienceOn
9 Huang, J. -S., et al., 2007, The Local Galaxy 8 ${\mu}m$ Luminosity Function, ApJ, 664, 840   DOI
10 Huynh, M. T., Frayer, D. T., Mobasher, B., Dickinson, M., Chary, R.-R., & Morrison, G., 2007, The Far-Infrared Luminosity Function from GOODSNorth: Constraining the Evolution of Infrared Galaxies for z<1, ApJ, 667, L9   DOI
11 Kauffmann, G., et al., 2003, The Host Galaxies of Active Galactic Nuclei, MNRAS, 346, 1055   DOI   ScienceOn
12 Kennicutt, R. C., Jr., 1998, Star Formation in Galaxies Along the Hubble Sequence, ARAA, 36, 189   DOI   ScienceOn
13 Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J., 2001, Theoretical Modeling of Starburst Galaxies, ApJ, 556, 121   DOI   ScienceOn
14 Lagache, G., Abergel, A., Boulanger, F., Desert, F. X., & Puget, J. -L., 1999, First Detection of theWarm Ionised Medium Dust Emission. Implication for the Cosmic Far-Infrared Background, A&A, 344, 322
15 Lagache, G., Dole, H., & Puget, J. -L., 2003, Modelling Infrared Galaxy Evolution Using a Phenomenological Approach, MNRAS, 338, 555   DOI   ScienceOn
16 Le Floc'h, E., et al., 2005, Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0< z <1, ApJ, 632, 169   DOI
17 Magnelli, B., Elbaz, D., Chary, R. R., Dickinson, M., Le Borgne, D., Frayer, D. T., & Willmer, C. N. A., 2009, The 0.4< z <1.3 Star Formation History of the Universe as Viewed in the Far-Infrared, A&A, 496, 57   DOI   ScienceOn
18 Perault, M., 1987, Ph.D. Thesis
19 Perez-Gonzalez, P. G., et al., 2005, Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z 3, ApJ, 630, 82   DOI
20 Rush, B., Malkan, M. A., & Spinoglio, L., 1993, The Extended 12 Micron Galaxy Sample, ApJS, 89, 1   DOI
21 Sanders, D. B., Mazzarella, J. M., Kim, D. -C., Surace, J. A., & Soifer, B. T., 2003, The IRAS Revised Bright Galaxy Sample, AJ, 126, 1607   DOI   ScienceOn
22 Schiminovich, D., et al., 2005, The GALEX-VVDS Measurement of the Evolution of the Far- Ultraviolet Luminosity Density and the Cosmic Star Formation Rate, ApJ, 619, L47   DOI
23 Wada, T., et al., 2008, AKARI/IRC Deep Survey in the North Ecliptic Pole Region, PASJ, 60, 517
24 Yuan, T. -T., Kewley, L. J., & Sanders, D. B., 2010, The Role of Starburst-Active Galactic Nucleus Composites in Luminous Infrared Galaxy Mergers: Insights from the New Optical Classification Scheme, ApJ, 709, 884   DOI