• Title/Summary/Keyword: corticospinal tract

Search Result 44, Processing Time 0.037 seconds

Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae;Kim, Yoon-Sik;Ryu, Ho-Ryong;Jo, Hyun-Kyeng;An, Jung-Jo;Namgung, Uk;Seol, In-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1303-1310
    • /
    • 2006
  • In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.

Mini-Review of Studies Reporting the Repeatability and Reproducibility of Diffusion Tensor Imaging

  • Seo, Jeong Pyo;Kwon, Young Hyeon;Jang, Sung Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2019
  • Purpose: Diffusion tensor imaging (DTI) data must be analyzed by an analyzer after data processing. Hence, the analyzed data of DTI might depend on the analyzer, making it a major limitation. This paper reviewed previous DTI studies reporting the repeatability and reproducibility of data from the corticospinal tract (CST), one of the most actively researched neural tracts on this topic. Materials and Methods: Relevant studies published between January 1990 and December 2018 were identified by searching PubMed, Google Scholar, and MEDLINE electronic databases using the following keywords: DTI, diffusion tensor tractography, reliability, repeatability, reproducibility, and CST. As a result, 15 studies were selected. Results: Measurements of the CSTs using region of interest methods on 2-dimensional DTI images generally showed excellent repeatability and reproducibility of more than 0.8 but high variability (0.29 to 1.00) between studies. In contrast, measurements of the CST using the 3-dimensional DTT method not only revealed excellent repeatability and reproducibility of more than 0.9 but also low variability (repeatability, 0.88 to 1.00; reproducibility, 0.82 to 0.99) between studies. Conclusion: Both 2-dimensional DTI and 3-dimensional DTT methods appeared to be reliable for measuring the CST but the 3-dimensional DTT method appeared to be more reliable.

In vivo Visualization of Human White Matter Tract by Diffusion Tensor Imaging Fiber Tractography (DTI-FT)

  • Lee, Seung-Koo;Kim, Dong-Ik
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.85-85
    • /
    • 2002
  • Purpose: To evaluate the white matter fiber connectivity of normal human using diffusion tensor MRI. Method: Normal young healthy volunteers (2 women and 1 man) and 3 brain tumor patients participated in this study. All studies were performed using a 1.5T Philips Gyroscan Intern system. Diffusion weighted imaging was performed using single-shot echo planar imaging, with navigator echo phase correction and SENSE. Diffusion weighting was performed along six independent axes, using diffusion weighting of b=800s/$\textrm{mm}^2$. 128matrix, 23cm FOV, 2.5mm slice thickness were used for Imaging parameters. Data were processed on a Window-2000 PC equipped with IDL and PRIDE (Philips Medical System). Corticospinal tract was traced from mid-pons level via posterior limb of internal capsule. Corpus callosum, cerebellar peduncles and frontal fibers were traced by fiber tractography.

  • PDF

A Study on the Tensor-Valued Median Filter Using the Modified Gradient Descent Method in DT-MRI (확산텐서자기공명영상에서 수정된 기울기강하법을 이용한 텐서 중간값 필터에 관한 연구)

  • Kim, Sung-Hee;Kwon, Ki-Woon;Park, In-Sung;Han, Bong-Soo;Kim, Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.817-824
    • /
    • 2007
  • Tractography using Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of the principal eigenvector in the white matter of the brain. However, the fiber tracking methods suffer from the noise included in the diffusion tensor images that affects the determination of the principal eigenvector. As the fiber tracking progresses, the accumulated error creates a large deviation between the calculated fiber and the real fiber. This problem of the DT-MRI tractography is known mathematically as the ill-posed problem which means that tractography is very sensitive to perturbations by noise. To reduce the noise in DT-MRI measurements, a tensor-valued median filter which is reported to be denoising and structure-preserving in fiber tracking, is applied in the tractography. In this paper, we proposed the modified gradient descent method which converges fast and accurately to the optimal tensor-valued median filter by changing the step size. In addition, the performance of the modified gradient descent method is compared with others. We used the synthetic image which consists of 45 degree principal eigenvectors and the corticospinal tract. For the synthetic image, the proposed method achieved 4.66%, 16.66% and 15.08% less error than the conventional gradient descent method for error measures AE, AAE, AFA respectively. For the corticospinal tract, at iteration number ten the proposed method achieved 3.78%, 25.71 % and 11.54% less error than the conventional gradient descent method for error measures AE, AAE, AFA respectively.

Clinical Uses of Diffusion Tensor Imaging Fiber Tracking Merged Neuronavigation with Lesions Adjacent to Corticospinal Tract : A Retrospective Cohort Study

  • Yu, Qi;Lin, Kun;Liu, Yunhui;Li, Xinxing
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.248-260
    • /
    • 2020
  • Objective : To investigate the efficiency of diffusion tensor imaging (DTI) fiber-tracking based neuronavigation and assess its usefulness in the preoperative surgical planning, prognostic prediction, intraoperative course and outcome improvement. Methods : Seventeen patients with cerebral masses adjacent to corticospinal tract (CST) were given standard magnetic resonance imaging and DTI examination. By incorporation of DTI data, the relation between tumor and adjacent white matter tracts was reconstructed and assessed in the neuronavigation system. Distance from tumor border to CST was measured. Results : The sub-portion of CST in closest proximity to tumor was found displaced in all patients. The chief disruptive changes were classified as follows : complete interruption, partial interruption, or simple displacement. Partial interruption was evident in seven patients (41.2%) whose lesions were close to cortex. In the other 10 patients (58.8%), delineated CSTs were intact but distorted. No complete CST interruption was identified. Overall, the mean distance from resection border to CST was 6.12 mm (range, 0-21), as opposed to 8.18 mm (range, 2-21) with simple displacement and 2.33 mm (range, 0-5) with partial interruption. The clinical outcomes were analyzed in groups stratified by intervening distances (close, <5 mm; moderated, 5-10 mm; far, >10 mm). For the primary brain tumor patients, the proportion of completely resected tumors increased progressively from close to far grouping (42.9%, 50%, and 100%, respectively). Five patients out of seven (71.4%) experienced new neurologic deficits postoperatively in the close group. At meantime, motor deterioration was found in six cases in the close group. All patients in the far and moderate groups received excellent (modified Rankin Scale [mRS] score, 0-1) or good (mRS score, 2-3) rankings, but only 57.1% of patients in the close group earned good outcome scores. Conclusion : DTI fiber tracking based neuronavigation has merit in assessing the relation between lesions and adjacent white matter tracts, allowing prediction of patient outcomes based on lesion-CST distance. It has also proven beneficial in formulating surgical strategies.

An Effective Transcranial Electric Motor-Evoked Potentials Method in Spinal Dural Arteriovenous Fistula Ligation Surgery (척수경막동정맥루 결찰술에서의 효과적인 경두개운동유발전위 검사방법)

  • Jang, Min Hwan;Lee, In Seok;Lim, Sung Hyuk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.2
    • /
    • pp.193-198
    • /
    • 2021
  • The purpose of spinal dural arteriovenous fistula (SDAVF) ligation is to prevent neurological injury and the poor blood supply through ligation of arteriovenous fistula. Therefore, intraoperative neurophysiological monitoring (INM) is required via multimodal neurological examination for minimizing the side effects after surgery based on the patient's symptoms. Transcranial electric motor-evoked potentials (TceMEP) help to check the condition of the corticospinal tract. Whenever ligation is performed, TceMEP should be performed every minute to check for abnormalities. However, an examiner's lack of knowledge about the operation procedure and examination and also poor communication between the examiner and surgeon can cause incorrect timing of the stimulation of TceMEP that interferes with the procedure and causes side effects such as paralysis and motor weakness. As a result of this SDAVF ligation survey, it is believed that for proper INM, case reports will be needed along with further research and the examiner will also have to work closely with the surgeon to minimize neurological damage to patients.

Technical Considerations of Effective Direct Cortical and Subcortical Stimulation (효과적인 대뇌 직접피질자극 검사 및 피질하자극 검사의 술기에 관한 기술적 고찰)

  • Lim, Sung Hyuk;Jang, Min Hwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.157-162
    • /
    • 2022
  • The purpose of the direct cortical and subcortical stimulation technique is to prevent false positives caused by transcranial electrical motor evoked potentials (TceMEP) in surgery on patients with brain tumors that have occurred around the motor cortex and to preserve the correct mapping of motor areas during surgery and the corticospinal tract. In addition, it reduces the trial and error that occurs during the intraoperative neurophysiological monitoring (INM) process and minimizes the test time, so that accurate information is communicated to the surgeon with quick feedback on the test results. The most important factors of this technique are, first, examination at a stimulus threshold of a certain intensity, and second, maintaining anesthesia depth at an appropriate level to prevent false positives from occurring during surgery. The third is the installation of a multi-level channel recording electrode on the opposite side of the area of operation to measure the TceMEP waveform and the response to direct cortical and subcortical stimulation in as many muscles as possible. If these conditions are maintained, it is possible to predict causes that may occur in other factors, not false positives, from the INM test.

A Neuromuscular Biomechanic Study of the Modulation of Corticospinal Excitability by Observation and/or Imagery of Action in Older Adults (장 노년층에서의 운동 연상 및 관찰에 따른 피질척수로 변화에 대한 근신경 역학적 연구)

  • Choi, Eun-Hi
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.681-688
    • /
    • 2009
  • To better delineate the changes in corticospinal excitability when older adults are asked to observe and/or imagine actions, 22 right-handed older adults without neurological abnormalities were included in this study. The amplitude and latency of motor evoked potentials (MEPs) by transcranial magnetic stimulation were recorded in the abductor pollicis brevis of the dominant hand during passive observation/imagery/active observation of slow/fast action of abduction of right thumb and also at resting state. Thus, active observation showed better changes than passive, but slow and fast action revealed no difference at all.

Mild Bradykinesia Due to an Injury of Corticofugal-Tract from Secondary Motor Area in a Patient with Traumatic Brain Injury

  • Lee, Han Do;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.6
    • /
    • pp.304-306
    • /
    • 2021
  • Objectives: We report on a patient who showed mild bradykinesia due to injury of the corticofugal tract (CFT) from the secondary motor area following direct head trauma, which was demonstrated on diffusion tensor tractography (DTT). Case summary: A 58-year-old male patient underwent conservative management for subarachnoid hemorrhages caused by direct head trauma resulting from a fall from six-meter height at the department of neurosurgery of a local hospital. His Glasgow Coma Scale score was 3. He developed mildly slow movements following the head trauma and visited the rehabilitation department of a university hospital at ten weeks after the fall. The patient exhibited mild bradykinesia during walking and arm movements with mild weakness in all four extremities (G/G-). Results: On ten-week DTT, narrowing of the right CFT from the supplementary motor area (SMA-CFT), and partial tearing of the left SMA-CFT, left CFTs from the dorsal premotor cortex (dPMC-CFT) and both corticospinal tracts (CSTs) at the subcortical white matter were observed. Conclusion: This case demonstrated abnormalities in both CSTs (partial tearing at the subcortical white matter and narrowing), both SMA-CFTs (narrowing and partial tearing) and left dPMC-CFT. We believe our findings suggest the necessity of assessment of the CFTs from the secondary motor area for patients with unexplained bradykinesia following direct head trauma.

Evaluation of Quantitative Effectiveness of MR-DTI Analysis with and without Functional MRI (기능적 자기공명영상 사용유무에 따른 확산텐서영상 분석의 유효성 평가)

  • Lee, Dong-Hoon;Park, Ji-Won;Hong, Cheol-Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Purpose: This study was conducted in order to evaluate the quantitative effectiveness of region of interest (ROI) setting in MR-DTI analysis with and without fMRI activation results. Methods: Ten right-handed normal volunteers participated in this study. DTI and fMRI datasets for each subject were obtained using a 1.5T MRI system. For neural fiber tracking, ROIs were drawn using two methods: The drawing points were located in the fMRI activation areas or areas randomly selected by users. In this study, the neural fiber tract targeted the corticospinal tract (CST) Quantitative analyses were performed and compared. The pixel numbers passing through the fiber tract in the individual brain volume were counted. The ratios between the ROI pixel numbers and the extracted fiber pixel numbers, and the ratios between the fiber pixel numbers and the whole-brain pixel numbers were also calculated. Results: According to our results, extracted CST fiber tract in which the ROI was drawn with fMRI activation areas showed higher distribution than drawing the ROI by users' hands. In addition, the quantitatively measured values represented higher pixel distribution: The counted average pixel numbers were 4553.8 and 1943.3. The average ratios of the ROI areas were 33.87 and 22.52. The average percentages of the individual whole-brain volume numbers were 2.06 and 0.87. Conclusion: Results of this study appear to indicate that use of this method can allow for more objectives and significant for study of the recovery of neural fiber mechanisms and brain rehabilitation.