Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae (Department of Oriental Medicine, Daejeon University) ;
  • Kim, Yoon-Sik (Department of Oriental Medicine, Daejeon University) ;
  • Ryu, Ho-Ryong (Department of Oriental Medicine, Daejeon University) ;
  • Jo, Hyun-Kyeng (Department of Oriental Medicine, Daejeon University) ;
  • An, Jung-Jo (Department of Oriental Medicine, Daejeon University) ;
  • Namgung, Uk (Department of Oriental Medicine, Daejeon University) ;
  • Seol, In-Chan (Department of Oriental Medicine, Daejeon University)
  • Published : 2006.10.25

Abstract

In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.

Keywords

References

  1. Dumont, R.J., Okonkwo, D.O., Verma, S., Hurlbert, R.J., Boulos, P.T., Ellegala, D.B. Dumont, A.S. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. 24: 254-264. 2001 https://doi.org/10.1097/00002826-200109000-00002
  2. Dumont, R.J., Verma, S., Okonkwo, D.O., Hurlbert, R.J., Boulos, P.T., Ellegala, D.B. Dumont, A.S. Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol. 24: 265-279, 2001 https://doi.org/10.1097/00002826-200109000-00003
  3. Schwab, M.E., Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 76: 319-370, 1996 https://doi.org/10.1152/physrev.1996.76.2.319
  4. Schwab, M.E. Repairing the injured spinal cord. Science 295: 1029-1031, 2002 https://doi.org/10.1126/science.1067840
  5. Bomze, H.M., Bulsara, K.R., Iskandar, B.J., Caroni, P., Skene, J.H. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci. 4: 38-43, 2001 https://doi.org/10.1038/82881
  6. Liu, B.P., Fournier, A., GrandPre, T., Strittmatter, S.M. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science. 297: 1190-1193, 2002 https://doi.org/10.1126/science.1073031
  7. Wang, K.C., Koprivica, V., Kim, J.A., Sivasankaran, R., Guo, Y., Neve, R.L., He, Z. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417: 941-944. 2002 https://doi.org/10.1038/nature00867
  8. GrandPre, T., Li, S., Strittmatter, S.M. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417: 547-551, 2002 https://doi.org/10.1038/417547a
  9. Silver, J., Miller, J.H. Regeneration beyond the glial scar. Nat Rev Neurosci. 5: 146-156, 2004 https://doi.org/10.1038/nrn1326
  10. Woolf, C.J., Bloechlinger, S. Neuroscience. It takes more than two to Nogo. Science 297: 1132-1134, 2002 https://doi.org/10.1126/science.1076247
  11. Hauben, E., Ibarra, A., Mizrahi, T., Barouch, R., Agranov, E., Schwartz, M. Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc Natl Acad Sci USA. 98: 15173-15738, 2001
  12. Kim, J.E., Li, S., GrandPre, T., Qiu, D., Strittmatter, S.M. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron. 38: 187-199, 2003 https://doi.org/10.1016/S0896-6273(03)00147-8
  13. Bareyre, F.M., Schwab, M.E. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci. 26: 555-563, 2003 https://doi.org/10.1016/j.tins.2003.08.004
  14. Simonen, M., Pedersen, V., Weinmann, O., Schnell, L., Buss, A., Ledermann, B., Christ, F., Sansig, G., van der Putten, H., Schwab, M.E. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38: 201-211, 2003 https://doi.org/10.1016/S0896-6273(03)00226-5
  15. Kerschensteiner, M., Schwab, M.E., Lichtman, J.W., Misgeld, T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 11: 572-577, 2005 https://doi.org/10.1038/nm1229
  16. 전국한의과대학 본초학교수 共編著. 本草學. 서울, 永林社. 2000
  17. 김완희. 최원영. 장부변증논치. 서울, 성보사. pp 281-287, 1990
  18. Gruner, J.A. A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9: 123-126, 1992 https://doi.org/10.1089/neu.1992.9.123
  19. Paxinos, G., Watson, C. The rat brain in stereotaxic coordinates, 4th ed. Academic Press, San Diego, USA. 1998
  20. Balentine, J.D. Pathology of experimental spinal cord trauma. I. The necrotic lesion as afunction of vascular injury. Lab Invest. 39: 236-253, 1978
  21. Basso, D.M., Beattie, M.S., Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol. 139: 244-256, 1996 https://doi.org/10.1006/exnr.1996.0098
  22. Rosenberg, L.J., Wrathall, J.R. Quantitative analysis of acute axonal pathology in experimental spinal cord contusion. J Neurotrauma. 14: 823-838, 1997 https://doi.org/10.1089/neu.1997.14.823
  23. Noble, L.J., Wrathall, J.R. Correlative analyses of lesion development and functional status after graded spinal cord contusive injuries in the rat. Exp Neurol. 103: 34-40, 1989 https://doi.org/10.1016/0014-4886(89)90182-9
  24. Noyes, D.H. Correlation between parameters of spinal cord impact and resultant injury. Exp Neurol. 95: 535-547, 1987 https://doi.org/10.1016/0014-4886(87)90298-6
  25. Shao, Z., Browning, J.L., Lee, X., Scott, M.L., Shulga-Morskaya, S., Allaire, N., Thill, G., Levesque, M., Sah, D., McCoy, J.M., Murray, B., Jung, V., Pepinsky, R.B., Mi, S. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45: 353-359, 2005 https://doi.org/10.1016/j.neuron.2004.12.050
  26. Tsai, C.C., Lu, M.C., Chen, Y.S., Wu, C.H., Lin, C.C. Locally administered nerve growth factor suppresses ginsenoside Rb1-enhanced peripheral nerve regeneration. Am J Chin Med. 31: 665-673, 2003 https://doi.org/10.1142/S0192415X03001387
  27. Seo, T.B., Han, I.S., Yoon, J.H., Hong, K.E., Yoon, S.J., Namgung, U. Involvement of Cdc2 in axonal regeneration enhanced by exercise training in rats. Med Sci Sports Exerc. 38: 1267-1276, 2006 https://doi.org/10.1249/01.mss.0000227311.00976.68
  28. Benowitz, L.I., Routenberg, A. A membrane phosphorylation ssociated with neuronal development, axonal regulation, phospholipid metabolism and synaptic plasticity. Trends Neurosci. 10: 527-531, 1987 https://doi.org/10.1016/0166-2236(87)90135-4
  29. Skene, J.H. Axonal growth-associated proteins. Annu Rev Neurosci. 12: 127-156.1989 https://doi.org/10.1146/annurev.ne.12.030189.001015
  30. McNamara, R.K., Routtenberg, A. NMDA receptor blockade prevents kainate induction of protein F1/GAP-43 mRNA in hippocampal granule cells and subsequent mossy fiber sprouting in the rat. Brain Res Mol Brain Res. 33: 22-28, 1995 https://doi.org/10.1016/0169-328X(95)00083-5
  31. Meberg, P.J., Gall, C.M., Routtenberg, A. Induction of F1/GAP-43 gene expression in hippocampal granule cells after seizures Brain Res Mol Brain Res. 17: 295-299, 1993 https://doi.org/10.1016/0169-328X(93)90014-G
  32. Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radziejewska, E., Morgenbesser, S.D., DePinho, R.A., Panayotatos, N., Cobb, M.H., Yancopoulos, G.D. ERKs: a family of protein-serine/threonine kinases that are activated andtyrosine phosphorylated in response to insulin and NGF. Cell 65: 663-675, 1991 https://doi.org/10.1016/0092-8674(91)90098-J
  33. Talarmin, H., Rescan, C., Cariou, S., Glaise, D., Zanninelli, G., Bilodeau, M., Loyer, P., Guguen-Guillouzo, C., Baffet, G. The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G(1) phase progression in proliferating hepatocytes. Mol Cell Biol. 19: 6003-6011, 1999 https://doi.org/10.1128/MCB.19.9.6003
  34. Doree, M., Galas, S. The cyclin-dependent protein kinases and the control of cell division. FASEB J. 8: 1114-1121, 1994 https://doi.org/10.1096/fasebj.8.14.7958616
  35. Seo, T.B., Han, I.S., Yoon, J.H., Seol, I.C., Kim, Y.S., Jo, H.K., An, J.J., Hong, KE., Seo, Y.B., Kim, D.H., Park, S.K., Yang, D.C., Namgung, U. Growth-promoting activity of Hominis Placenta extract on regenerating sciatic nerve. Acta Pharmacol Sin. 27: 50-58, 2006 https://doi.org/10.1111/j.1745-7254.2006.00252.x
  36. Raineteau, O., Schwab, M.E. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2: 263-273. 2001 https://doi.org/10.1038/35067570