• 제목/요약/키워드: corrosion ratio

검색결과 584건 처리시간 0.034초

콘크리트 내부염소이온에 의한 철근의 부식특성에 관한 연구 (A Study on the Corrosion Characteristics of Steel Reinforcements Induced by Internal Chlorides in Concrete)

  • 오병환;장승엽;신용석;차수원;김광수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.197-202
    • /
    • 1998
  • The corrosion of steel reinforcements in concrete is of much concern in recent years. The mechanism of corrosion, however, is not clear yet. This study is focused on the corrosion of steel induced by internal chlorides in concrete at early ages. To examine the critical concentration of steel, half-cell potential, chemical composition of expressed pore solutions of mortars and rate of corrosion area were observed with respect to additions of chlorides, types of binders, water-binders ratio.

  • PDF

Titanium 전열관을 사용하는 원전 복수기 재료의 Galvanic Corrosion에 미치는 면적의 영향 (Area Effect on Galvanic Corrosion of Condenser Materials with Titanium Tubes in Nuclear Power Plants)

  • Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Uh-Chul
    • Nuclear Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.507-514
    • /
    • 1993
  • Titanium재료는 해수에서 좋은 내식성을 가지는 이유로 최근 원자력발전소 복수기에 사용되고 있다. 그러나, Ti이 tubesheet재 료인 Cu 합금에 접하고 이것이 water box 재료인 탄소강에 접하게될 경우 접촉금속에 심한 galvanic corrosion이 일어나게 된다. 전기화학적 실험에 의하면, 탄소강이 해수속에서 Ti나 Cu에 접할 때 탄소강의 부식속도는 증가할 것이며, Cu가 Ti에 해수중에서 장기간 접촉할 경우에는 Cu의 부식속도는 증가할 것으로 생각된다, 또한 표면적비, R$_1$(surface area of carbon steel/surface area of Ti).와 R$_2$(surface area of carbon steel/surface area of Cu)가 탄소강의 galvanic corrosion에 매우 중요하며. Water box 재료인 탄소강의 부식속도를 최소화하기 위해서는 이들 표면적비가 낮게 유지되어서는 안될 것이라고 생각된다 침지 galvanic 부식 시험결과 surface area of Fe/surface area of Al Brass값이 1일때 탄소강의 부식속도는 4.4mpy 이었으나 이 비가 $10^{-2}$ 일때는 570mpy이었다. 이렇게 연결된 galvanic시편에 Ti tube를 연결한 경우에는 이 비가 1일때 탄소강의 부식율이 4.4mpy에서 13mpy로 증가하였다. 이는 R$_1$가 R$_2$가 분극곡선에 복합적인 영향을 미치는것으로 설명할 수 있다.

  • PDF

그라우트 품질을 고려한 텐던의 부식저항성 평가 (Evaluation of Corrosion Resistance with Grout Type and Tendon)

  • 류화성;안기홍;고경택;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권4호
    • /
    • pp.76-82
    • /
    • 2018
  • PSC 구조에서 덕트 내부의 그라우트는 텐던 부식에 효과적인 부식방어 기재이다. 본 연구에서는 일반적으로 사용되고 있는 그라우트와 낮은 물-시멘트비와 실리카 퓸을 혼입한 그라우트를 대상으로 역학적, 내구적 시험을 수행하였다. 높이 1000mm의 덕트를 이용하여 텐던 시스템을 제작하였으며, 두 가지 그라우트에 대하여 강도, 흡수율, 플로우, 블리딩, 팽창률 등을 평가하였다. 또한 내부 12.7mm 텐던에 대하여 ICM(Impressed Current Method)를 이용하여 2일 및 4일 동안 부식을 촉진시켰으며 부식량을 조사하였다. 개선된 그라우트에서는 10MPa 이상의 높은 강도와 50% 이하의 낮은 흡수율을 나타내었다. 또한 2일~4일 동안의 부식촉진실험에서 39.8%~48.2%의 뛰어난 부식감소율 나타내었다.

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

선형분극법을 이용한 보통프틀랜드시멘트 콘크리트의 임계염화물량 (Determination of Critical Chloride Content of Ordinary Portland Cement Concrete by Linear Polarization Technique)

  • 김홍삼;정해문;안태송
    • 한국세라믹학회지
    • /
    • 제44권9호
    • /
    • pp.524-528
    • /
    • 2007
  • The results of evaluating steel corrosion in concrete containing chloride content of various levels indicated that the more chloride content in concrete leads to the lower potential and higher corrosion current density. However, the open circuit potential of steel varied with time and exposure condition, and the corelation between the open circuit potential and corrosion current density was not obvious. In order to determine the critical threshold content of chloride of steel corrosion in concrete, the concept of average corrosion current density was employed. The range of critical chloride content in portland cement concretes was about $1.56{\sim}1.77%$($Cl^-$, %, wt of cement content) along with water-cement ratio, and higher water-cement ratio resulted in reduction in critical threshold chloride content.

Evaluation on Steel Bar Corrosion Embedded in Antiwashout Underwater Concrete

  • Moon Han-Young;Shin Kook-Jae
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.303-309
    • /
    • 2005
  • This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed on three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures. The three series of antiwashout underwater concrete were: concrete constituted exclusively with ordinary portland cement (OPC), concrete composed of ordinary portland cement mixed with fly-ash in $20\%$ ratio (FA20), and concrete with ground granulated blast furnace slag mixed in $50\%$ ratio (BFS50). The environment of manufacture was in artificial seawater. Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below -350mv after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as $30{\mu}A/mm^2$ and $0.258\%$. On the other hand, for the other specimens that are FA20 and BFS50, potential values below -350mV were observed later at 18 and 20 cycles, respectively. Results confirmed the hypothesis that mineral admixtures may be more effective on delay the development of steel bar corrosion in antiwashout underwater concrete.

Prediction of shear strength and drift capacity of corroded reinforced concrete structural shear walls

  • Yang, Zhihong;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.245-257
    • /
    • 2022
  • As the main lateral load resisting system in high-rise reinforced concrete structures, the mechanical performance of shear wall has a significant impact on the structure, especially for high-rise buildings. Steel corrosion has been recognized as an important factor affecting the mechanical performance and durability of the reinforced concrete structures. To investigate the effect on the seismic behaviour of corroded reinforced concrete shear wall induced by corrosion, analytical investigations and simulations were done to observe the effect of corrosion on the ultimate seismic capacity and drift capacity of shear walls. To ensure the accuracy of the simulation software, several validations were made using both non-corroded and corroded reinforced concrete shear walls based on some test results in previous literature. Thereafter, a parametric study, including 200 FE models, was done to study the influence of some critical parameters on corroded structural shear walls with boundary element. These parameters include corrosion levels, axial force ratio, aspect ratio, and concrete compressive strength. The results obtained would then be used to propose equations to predict the seismic resistance and drift capacity of shear walls with various corrosion levels.

염해 및 동결융해의 복합열화 작용에 의한 부식촉진시험에 관한 연구 (A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw)

  • 박상순;소병탁
    • Corrosion Science and Technology
    • /
    • 제15권1호
    • /
    • pp.18-27
    • /
    • 2016
  • In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the $30^{th}$ freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

자동차 차체용 알루미늄 합금 판재의 기계적특성과 부식피로수명 (A mechanical proprties and fatigue life of aluminum alloy sheets for autobodies)

  • 박인덕;윤옥남;남기우
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.57-69
    • /
    • 1997
  • The objetive of this study is to compare the mechanical proprties of 6000 series Al-Mg-Si aluminum alloy (AC120) with 5000 series Al-Mg aluminum alloy (TG25), and to investigate the influence of corrosion solution for fatigue life. Comparing of TG25 and AC120 alloy sheets, TG25 alloy sheets showing higher plastic ratio and total elongation have better formability than AC120 alloy sheets. The hardness of nugget area was a little higher than that of base metal area. Also, grain coarsening was observed in HAZ(Heat Affected Zone). In a corrosion fatigue experiment, the fatigue life decreased as concentration increased, when a dipping time was constant. The life decreased as dippling time increased, when a concentration was constant.

  • PDF

콘크리트의 중성화로 인한 철근의 부식에 관한 기초적 연구 (A Fundamental Study on the Steel Corrosion Due to Carbonation of Concrete)

  • 이창수;윤인석;최성기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.203-206
    • /
    • 1998
  • In reinforced concrete carbonation of concrete leads to depassivation of the reinforcement, and hence to initiation of corrosion. As a result of carbonation accelerating experiment with using effect of wet-dry cycle and 15% concentration of CO ₂, the carbonation rate shows very distinct difference according to W/C ratio. OPC-40 estimated no carbonation depth, whereas OPC-60 estimated rapidly the carbonation rate. The comparative analysis of the carbonation rate accelerating depends on different kinds of cement shows fastest FAC-20. Also, highly W/C ratio's concrete shows low half-cell potential value and fast corrosion rate. During period for 14 weeks. corrosion rate was not severe. So, it can be concluded that only carbonation attack on concrete doesn't severly deteriorated except very poor qualitified concrete.

  • PDF