• Title/Summary/Keyword: corner stiffness

Search Result 42, Processing Time 0.031 seconds

Analysis of Characteristics of Connected-pile Foundations for Transmission Tower according to Changes of Load and Connection Beam Conditions in Clay (점토지반에서 하중특성 및 연결보조건에 따른 송전철탑용 연결형 말뚝기초의 특성 분석)

  • Kyung, Doohyun;Lee, Junhwan;Paik, Kyuho;Kim, Youngjun;Kim, Daehong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.5-18
    • /
    • 2013
  • The differential settlement between the foundations causes the critical damage on the transmission tower constructed in soft ground. Connected-pile foundation for transmission tower structures is an option to prevent the differential settlement. It consists of main foundations and connection beams that are placed between the individual foundations at each corner of tower. In this study, 24 model pile load tests were conducted at a construction site in jeonlabuk-do to investigate the effects of the connection beams on transmission tower foundation. In model tests, various load conditions and connection beam conditions were considered. As the test results, the displacements of connected-pile foundation differed in accordance with load directions. The settlements of connected-pile foundation decreased with the increased stiffness of connection beams, lateral load capacity decreased in accordance with load height, and the lateral load capacity on the failure criteria was similar regardless of load direction.

Study on through the thickness stresses in the corner radius of a laminated composite structure (복합재 구조물의 모서리 곡면 부위에 대한 두께방향 응력 연구)

  • Kim, Sung Joon;Hwang, In Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.665-672
    • /
    • 2013
  • One of the major causes of stiffness and strength degradations in laminated composite structures is the delamination between composite layers. In most engineering applications, laminated composite structures have certain curvatures. If the curved composite structure is subjected to bending that tends to flatten the composite structures, through the thickness stresses can be generated in the thickness direction of the composites. Under normal operation open mode delamination could occur at the sites of peak interlaminar stress. This paper describes a technique to determine radial direction stress of a laminated composite structure using a curved beam. Stacking sequence effects of interlaminar stress were studied. The radial location and intensity of the open mode delamination stress were calculated and compared with the results obtained from the analytical solution and finite element method.

A Study on Simplified Model of Double Angle Connections Subjected to Axial Loads (축방향 인장력을 받는 더블 앵글 접합부의 단순모형에 관한 연구)

  • Hong, Kap-Pyo;Yang, Jae-Guen;Lee, Soo-Kueon;Song, Byung-Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.75-82
    • /
    • 2000
  • Recently, many studies on connections in steel structures have been performed. In practice, designers assume that the connection is a rigid- or pinned-one, however, actually the connection behaves as partially restrained one, neither fully restrained nor unrestrained. This paper concentrates on the behavior of double angle connections in the field of semi-rigid connections. The behavior of double angle connection. induced by abrupt axial tension load or by collapsed brace in medium or low rise building, is analyzed by 3D nonlinear finite element method using ABAQUS(ver 5.8). From the analytic results. a simplified model of double angle and a rotational stiffness at the corner of the angle are derived, which are fundamentally used for understanding the behavior of the double angle connection.

  • PDF

Efficient Vibration Analysis of a Biaxial Hollow Slab Having Hexahedron Balls with Rounded Corner (모서리가 둥근 직육면체 중공볼을 가지는 2방향 중공슬래브의 효율적인 진동해석)

  • Park, Hyun-Jae;Kim, Min-Gyun;Lee, Dong-Guen;Park, Yong-Koo;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.421-428
    • /
    • 2009
  • In this study, an equivalent plate element model has been developed for an efficient vibration analysis of a biaxial hollow slab. To this end, equivalent mass and stiffness of equivalent plate element models corresponding to solid element models of example biaxial hollow slabs were calculated. To verify the efficiency and accuracy of the equivalent plate element models, structural analyses of example structures were performed. Analytical results showed that the natural frequencies of the equivalent plate element models were very close to those of the solid element models. Time history analyses of example biaxial hollow slabs subjected to walking load were conducted using the equivalent plate element models and the solid element models, and the results were compared. It could be seen based on the analytical results that the equivalent plate element model could provide very accurate results compared to the solid element model with significantly reduced analysis time.

Performance of Innovative Prestressed Support Earth Retention System in Urban Excavation (도심지 굴착에 적용된 IPS 흙막이 구조물의 현장거동)

  • Kim Nak Kyung;Park Jong Sik;Jang Ho Joon;Han Man Yop;Kim Moon Young;Kim Sung Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.27-36
    • /
    • 2005
  • The performance of innovative prestressed support (IPS) earth retention system applied in urban excavation was presented and investigated. The IPS wales provide a high flexural stiffness to resist the bending by lateral earth pressure, and the IPS wales transfer lateral earth pressure to Corner struts. The IPS wale provides a larger spacing of support, economical benefit, construction easiness, good performance, and safety control. In order to investigate applicability and stability of the IPS earth retention system, the IPS system was instrumented and was monitored during construction. The IPS system applied in urban excavation functioned successfully. The results of the field instrumentation were presented. The measured performances of the IPS earth retention system were investigated and discussed.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

The Efficacy of Ampule Containing Herbal Extract for Improving Skin Wrinkles in Women (한약재 추출물 함유 앰플의 주름개선 효능에 관한 기초 임상연구)

  • Do, Eun-Ju;Lee, Jin-Sang;Park, Hyun-Jin;Ha, Il-Do;Kim, Young-Chul;Kim, Mi-Ryeo
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.111-121
    • /
    • 2009
  • Objectives : This study was performed to evaluate the efficacy of ampule containing herbal extract(Ulmus davidiana, Ginkgo biloba, Perilla ocymoides, Morus alba, Glycyrrhiza uralensis (licorice), and Angelica gigas) on skin wrinkles in adult women with facial wrinkles. Methods : A total of 12 women, 30 to 46 years of age, with wrinkles in the corner of eyes, applied ampule containing herbal extract twice daily for up to 12 weeks. Silicon replicas of right crow's feet area and antecubital fossa were taken before use of test product and at 4, 8 and 12 weeks. The replicas were analyzed by optical profilometry with Skin Visiometer SV600. The wrinkle and roughness parameters, R1, R2, R3, R4 and R5 were calculated and statistically analyzed. In addition, a subjective evaluation of product efficacy was conducted by patient's assessment. Results : The mean values of all the skin roughness parameters were decreased at 4-week, and decreased significantly at 8 and 12-week except R4 at 12-week after test product use. The subjective evaluation of wrinkle by patient's assessment was also improved. However, one patient noted stiffness of face after use of test product. Conclusions : These study suggested that the application of ampule containing herbal extract twice daily for 12 weeks may effectively improve the facial wrinkles without severe side effect.

  • PDF

An Experimental Study on Flexural Behavior in Framed Structure of P.S.T Method (P.S.T 공법 라멘 구조물의 휨 거동 특성에 관한 실험적 연구)

  • Cui, Jie;Yoon, Jong Nam;Eum, Ki Young;Hong, Sung Nam;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • The existing underground trenchless methods use reinforcing rod in steel tube to obtain structural stiffness. However, there are some problems such as inconvenience of work and expensive material fee which are resulted from limited working space and reinforcing work. To resolve these problems, a new trenchless method, namely P.S.T method (Prestressed Segment Tunnel Method), is developed which uses joint to connect the steel segment and form erection structure in underground construction. Further, installing strands for prestressing. In order to evaluate the flexural capacity of the P.S.T method structure, experiment was conducted. The parameters considered in the experiment are the span-to-depth ratio, diameter of steel tube at corner, prestressing force and welding of joint. Altogether examining the flexural behavior, the effect of deflection in structure according to different parameters has also been analysised.

A Simplified Finite Element Method for the Ultimate Strengh Analysis of Plates with Initial Imperfections (초기결함을 가진 판의 최종강도해석을 위한 간이 유한요소법)

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.24-38
    • /
    • 1989
  • In this study, an attempt for formulating a new and simplified rectangular finite element having only four corner nodal points is made to analyze the elastic-plastic large deformation behaviour up to the ultimate limit state of plates with initial imperfections. The present finite element contains the geometric nonlinearity caused by both in-plane and out-of-plane large deformation because for very thin plates the influence of the former may not be negligible. Treatment of expanded plastic zone in the plate thickness direction of the element is simplified based upon the concept of plastic node method so that the elastic-plastic stiffness matrix of the element is derived by the simple matrix operation without performing complicated numerical integration. Thus, a considerable saving of the computational efforts is expected. A computer program is also completed based on the present formulation and numerical calculation for some examples is performed so as to verify the accuracy and validity of the program.

  • PDF

Numerical Analysis of Thermal Effect on Axial Load and Pile Settlements in PHC Energy Piles (PHC 에너지파일의 열응력에 따른 축하중-침하 수치해석)

  • Lee, Dae-Soo;Min, Hye-Sun;Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.5-17
    • /
    • 2013
  • This study investigates the effect of thermal stress on axial load and pile settlement of PHC energy piles. A series of numerical analyses were performed by controlling major influencing parameters such as pile arrangement, pile spacing, end-bearing condition, soil condition and pile cap stiffness. It is found that the characteristics of pile-load transfer are significantly affected by seasonal operation mode (i.e., cooling and heating) throughout the year. Also, the axial load under thermal loading increases with increasing the pile spacing. The settlement of the pile in sand is larger than that in clay because of the thermal stress generated. It is also found that thermal stress highly influences on the end-bearing pile, corner pile and rigidity of pile cap.