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A Simplified Finite Element Method for the Ultimate Strength Analysis
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Abstract

In this study, an attempt for formulating a new and simplified rectangular finite element
having only four corner nodal points is made to analyze the elastic-plastic large deformation
behaviour up to the ultimate limit state of plates with initial imperfections. The present finite
element contains the geometric nonlinearity caused by both in-plane and out-of-plane large
deformation because for very thin plates the influence of the former may not be negligible.
Treatment of expanded plastic zone in the plate thickness direction of the element is simplified
based upon the concept of plastic node method so that the elastic-plastic stiffness matrix of the
element is derived by the simple matrix operation without performing complicated numerical
integration. Thus, a considerable saving of the computational efforts is expected.

A computer program is also completed based on the present formulation and numerical calcu-

lation for some examples is performed so as to verify the accuracy and validity of the program.
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1. Introduction

Plate structures such as ship structures are basically
composed of plate elements. As the external load
increases, these plate elements show geometric non-
linearity associated with large deformation and
material nonlinearity with plasticity until they reach
the ultimate limit state. Also, heating processes such
as welding and cutting, etc. result in the existence
of initial imperfections like initial deflection and
residual stress which seriously affect the ultimate
strength of plates.

In order to make more veliable design and safety
assessment of plate structures, it is essential to have
a knowledge for the elastic-plastic large deformation
behaviour up to the ultimate limit state of plate
elements with initial imperfections.

Finite element method is one of the most powerful
approach to analyze nonlinear behaviours of structures
but in usual requires enourmous computational efforts
which are generally caused by a large number of
unknowns and also complicated numerical integration,
especially for obtaining the elastic-plastic stiffness
matrix of the element.

From the above points of view, this paper describes
a formulation of a new and simplified rectangular
finite element in an attempt to efficiently analyze the
elastic-plastic large deformation behaviour up to the
ultimate limit state of plates with initial imperfec-
tions.

The novel characteristics of the present finite
element are summarized as follows:

1) It is a rectangualr, plane-shell element which
has only four corner nodal points having five
degrees of freedom in each nodal point.

92) 1t includes the geometric nonlinear effect due
to both in-plane and out-of-plane large deforma-
tion of the element because for thin plates
widely used in plate structures the influence of
the former should be included in a number of

cases (1.

3

~

The expanded yielding zone in the plate thi-

ckness direction of the element is condensed into
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plastic nodes inserted in the nodal point based
upon the concept of plastic node method propo-
sed by Ueda et al.(2,3] so that the elastic-
plastic stiffness matrix of the element can be
calculated by the simple matrix operation without
performing complicated numerical integration if
once the elastic stiffness matrix is obtained.

4) Above treatments will give a considerable saving
of the computational efforts producing the

sufficient accuracy.

9. Formulation of the Present Finite
Element

2.1. Nodal Force and Displacement Vector of
the Element
The combined in-plane and out-of-plane deformation
behaviour of a rectangular plate element may be
expressed by the nodal force vector {R; and displa-
cement vector {U) having five degrees of freedom
at each corner nodal point which is constructed in
the mid-thickness shown in Fig. 1 as
{R}={Ra Ryl Ry My Myl R, Ry2 Ry My
M,; Ris Rys Ry My My Ry Ry Rey My

h
MyUT (1.a)
(Ul={u; vy w1 9n 0y 62 v2 W2 Oz B30 U3 U3 Wy
O3 Oy ug vy Wy O Byi)7 (1.b)

f,=—0w/oy, 0,=0w/ox
where R, R, and R. are axial forces in the x,» and
2z direction and M, and M, are out-of-plane bending
moments with regard to x and y direction, respectively.
Also, u, v and w are displacements in the x, y and

z direction and 8, and ¢, are rotations with regard

Fig. 1. The local coordinate of a rectangular plate
element and its nodal forces and displacements
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to z and y direction, respectively and superscript T denotes an transporse of the vector or matrix.
2.2. Relationship Between Strains and Displacements
The strain-displacement relation taking large deformation effects for out-of-plane as well as in-plane of the

element into consideration is given in the cartesian coordinate system shown in Fig. 1 as(4)

= g (G S )
o= oy a0 ) G (5

(G e ey (G NG ) (B S (S @

where ¢,, ¢, and 7., denote the generalized strain components for a plane stress state and the first term at

the right hand side of each equation indicate the small in-plane strain components due to in-plane deformation
and likewise the second term denotes the small out-of-plane strain components due to out-of-plane deformation.
Also, the third and fourth term are nonlinear strain components due to large deformation for in-plane and
out-of-plane, respectively.

The incremental expression of Eq. (2) is written as
s e 2 )2 ) )
HER ) )
s e B (Y )
)

o= (Dl B0 ) e Sl"a’;’ R G+ (5 T+ (e M (G )

(0w \( 0dw ow ddw 0du \( 0du odv \( 0du_ 04w 04w
+( %2 X 3y )+ dy X 3z )+ iz hi By )+( 9z X Ay )+( oz X Jy ) ®
where prefix 4 denotes the infinitesimal increment of . the in-plane component of displacement
the variable. vector
For a plane-she!l element, since the nodal displace- (Wi={wy 0z 031 w2 Oxa Oy2 w3 03 013 Wi O
ment vector (U} can be separated into {S} and {W} 6ys)
which are defined as the in-plane and out-of-plane : the out-of-plane component of displacement
component of the vector {U]}, respectively, Eq.(3) is vector
rewritten by the matrix form using the vectors (S} (B] : the strain-displacement matrix
and {W] as ou_ 0w
. ox ozt
{4e} =(B,) {48} —Z(Bsl (AW} +(C,I(G,1 {48} | .
X ¢ e (=Ba(s), 4 P | =W,
+LCOLG (AW} +404C,1(6,) 45) o %
ﬁyf +_ 5 o'w
+ 3 LACIG (AW} ox 0y
/ au
={B]{4U} 4 or W
where, {de} ={dex dey dyey)T | dv 2—:
: the increment of strain component | o9z | =(G,11{S], 5 =[G:I{ W,
w
U= ou | la—
oy | y
: the nodal displacement vector v J‘
{S)={w1 vy 4z va us v3 us vy} { y
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du ov Y dw
dr ox 0 0 ;‘ ox
|
= Ou v | [Ci= ow
» 0 0 5y 5 [Cs] 0 3
u dv ou dv | | 0w ow
oy oy ox ox L oy oz

(5)
2.3. Relationship Between Membrane Stresses
and Strains

Membrane stress increment {do} due to strain

increment {4e¢} is calculated for a plane stress state as

{do} =(D]J¢ {de}* 6
where, {do)={do: do, 47:,}T

: the increment of average membrane stress

components for a plane stress state

1 v 0
(D)= lli ; v 1 0 D
v 1—v
0 3

: the elastic stress-strain matrix
E : Young's modulus
v . Poisson’s ratio
Also, superscript e in Eq.(6) denotes the elastic range.
2.4. Derivation of the Tangent Elastic Stiff-
ness Matrix in the Local Coordinate

2.4.1. Total Lagrangian Formulation

Considering that the structure under the acting of
the nodal force {R} which results in the producing
of the internal stress {s} is in equilibrium, if the
structure remains the equilibrium state even after
the additional acting of the virtual displacement
increment 8 {4U} corresponding to the virtual strain
increment &{de} which develops the nodal force
(4R} and the resultant stress {do}, the following
equation should be satisfied by the principle of the
virtual work(5].

5{4UJT(R+4R} = [ 3(49)7(s+da}dVol (8

where the left side term represents the external work
done by the virtual displacement increment and the
right side indicates strain energy stored during the
action of the virtual strain increment and al-
sofv(-) dVol denotes the integrating for the entire
volume of the element and prefix & denotes the
virtual.

The virtual strain increment &{de} is obtained by

differentiating Eq. (4) with respect to the increment
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of the variable as
8{4e} =[B,13{48) —2[BsJ6 {4 W}
+1C,+4C,1(G,15 (48}
+(Cs+4CI(G,16 (4 W} )
Substituting Eq.(6) and (9) into Eq.(8) and
neglecting the infinitesimal terms having higher order
of the increment in comparison with just one order
of the increment, the elastic stiffness equation of the
element in the local coordinate system is finally
expressed as
{L}+ (4R} =[K]*{4U] 1o
where, [KJ¢: the tangent elastic stiffness matrix of
the element
{L}={R} —{r}

: the unbalance force caused by the
discrepancy between the total external
force {R} and the total internal force
{r}

Also, the total internal force {r} in Eq.(10) is

calculated as
)= (BT s)aVel+ [ (G,ITIC,T (o) dVol
+ [ 6ATICAT (s} dVol an

where, {0} ={0x 0y T2y
: :the total average membrane stress

components

By the way, the tangent stiffness matrix (KJ¢ in
Eq.(10) may be subdivided into four terms as

(K)e=[Kp)+[Kal+[KcI+ (K] 12)

In the right hand side of Eq.(12),

the second term represent stiffness matrices related

the first and

to the in-plane and out-of-plane small deformation,
respectively. The third term, so called initial defor-
mation stiffness matrix consists of three terms
representing the geometric nonlinear effect associated
with in-plane deformation, out-of-plane deformation
and their interactions. The fourth term is so called
initial stress stiffness matrix which is produced by
the existence of initial stress and consists of two terms
related to the in-plane and out-of-plane large defor-
mation in which the term to their interactions is
not appeared.

Each term mentioned above is obtained in detail as
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K] 0 0 0
SHEILR S REILN]
0 0 0 ;[K3)
[ (K3 \'EKJ} [EKs] 0 ]
(Kel= — 1=
KT K] 0 (K]
(13.a)

where, (K= [ (B,J7(DI(B,)dVol,

(K= [ (BOTLDICB = dVol,
(K= [ [G,T(C,1TIDI(B,dVol

+ [ [B,ITCDICC, (G )dVol

+ [ (GATLC,ITIDITC,IG,)dVel,
(K= [ (B,TIDICCGAdVol

+ [ (G,IT(C,ITIDICCIGAaVol,
(Ks)= [ (GRTLCATIDICCI(GAdVl,
‘K= 6,7700,)(G,1dVol,

K= [ 601 (GldVol,

Ox 0 Txy 0
- 0 Jx 0 Txy
e I T R
0 7% 0 oy
o= 9r Te (13.b)

Lr” ay -
In calculating Eq. (13), terms including one order
of the variable “c” which would become to be zero
by completing the integration for the entire volume
of the element in the elastic range and even in the
elastic-plastic range because the inside of the element
except for plastic nodes is considered to be always
elastic in this study, were eliminated.

2.4,2, Updated Lagrangian Formulation

The stiffness matrix _K]¢ in Eq.(12) was derived
under the consideration that the local coordinate of
the element is fixed with ragard to the global space
one, which results in the possibility of the use of
the identical transformaton matrix through every
incremental loading steps.

On the other hand, using the concept of updated
Lagrangian formulation in which the local coordinate
may become to be altered and updated in each
deformed state of the element so that the transfor-

mation matrix from the local to the global ¢gordinate
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should be newly set up, the initial deformation
stiffness matrix (K¢l in Eq.(12) ecan be removed
because the initial deformation in the beginning of
each incremental loading step has become to be
eliminated. Thus, the stiffness equation will be
written by three terms as
(KJe=[K,]+ (Kgl+(K,] (19
2.5. Displacement Function
In this study, the bi-linear function for the in-
plane displacement of # and v and the polynomial
function which is expressed in terms of the twelve
parameters for the out-of-plane displacement of w
are adopted as (6]
u=ay+ax-+azy+axy
v=b,+byx-+bsy+bixy
w=c; - cxesy F e’ ozxy + syt oz
+eaxly +coxy? ey +enxty + craxy® (15)
where, ay, @y ¢y are unknown coefficients which
are expressed in terms of nodal displacements (U}
by the usual manner of the finite element tecnique,
Then, substituting Eq.(4) and (15) into Eq.(12) for
the total Lagrangian formulation and into Eq.(14)
for the updated Lagrangian formulation and also
finishing all volume integrations, components of the
tangent elastic stiffness matrix [KJ° of the element
in the local coordinate will be obtained. Here, since
the stiffness matrix [K]¢ is nonlinear with regard to
the deformation, it should be newly calculated at
every incremental loading steps.
2.6. Yielding Condition
In this study, plasticity of the element is checked
in the corner nodal points located in the middle plane
of the cross-section. Also, the fully plastic condition
under combined in-plane and out-of-plane loads
through the cross-section of the element is used as
a yielding condition. Then, the yielding condition
in the i th nodal point, which is expressed in terms
of the resultant membrane stress and generalized

bending stress components will be given by the
nondimensional expression as(3]

Fi=ni+mi| —1=0 (16)
Where) n?':n;zri_nzinyi“‘*‘ﬂz,"*“gﬂiy,'

2 2 2
m?:mxi_mxi myi+myi+3m5ﬁ
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N0/ o, Ryi=0yif00, Nayi=Tryil a0
M =20 i/ 360, Myi=20y5i/3G0, Mzyi=2Txy8i/300
{oi} ={ox T yi Tm‘}r
: the nodal membrane stress components
{o8i) = {00 Oybi Taysi) T
: the nodal maximum generalized bending
stress components developed in the outer
fiber of the cross-section[3]
go - the yielding stress of the element material
Also, subscript ¢ denotes the ¢ th nodal point.

The resultant membrane and bending stress com-
ponents used in Eq.(16) can be obtained by the
accumulation of the increment of the corresponding
components through each loading step. Also, the
increment of stress components in the ¢ th nodal point

is calculated as
{doi} =[D]* {de;*=[DI*(Bi} {4U}* (17.a)

{doss} =—1*/6( D) (e} o= —12/6{ DY (By) (4 W}*

(17.b)
where, (B;) and {Bs) which are the functions of the
variables of = and y indicate the strain-displacement
matrices being substituted the local coordinate for
Also,

for the calculation of the bending stress components,

the ith nodal point into x and y of Eq.(4).
only out-of-plane displacement {dW}®¢ is needed
because the generalized bending stress is independent
of the in-plane displacement {4S} as discribed in
Eq.(17.Db).

Eq. (16) may be sketched as shown in Fig.2 and
the curve in the figure is termed as the yielding
surface. Thus, if the value of the yielding function
at any nodal point is less than zero, which implies
that the value of the yielding function is located in
the inside of the yielding surface, like in point A
of Fig.2, the condition of this nodal point is still
elastic, but when it reaches zero with the increasing
of the external load, which likewise indicates that
the value of the yielding function is just at the
yielding surface, like in point B or B’ of Fig. 2,
the state of that nodal point becomes to be plastic
and then the plastic node is inserted at such a nodal
point but the inside of the element is considered to
be elastic. In reality, however, it is very difficult to

secure that the value of the yielding function is
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-1.0 0 1.0

-1.0

Fig. 2. A diagram of the yielding surface

just at the yielding surface since the response is
nonlinear. Thus, in this study, the smallest magnifi-
cation factor for the initially prescribed load to make
a yielding only one nodal point among all elastic
nodes is linearly predicted in advance (see Appendix
I). Then,
through the incremental loading step so that the

elastic nodes are yielded one by one

value of the yielding function will be located just
or very near in the yielding surface. However, if
the value of the yielding function is in the outside
of the yielding surface, like in point C of Fig. 2,
which represents that the prescribed load increment
was too big, the load increment should be corrected
and the iteration of the procedure is necessary until
the desired accuracy is obtained.
2.7. Derivation of the Tangent Elastic-Plastic
Stiffress Matrix in the Local Coordinate

In this study, the tangent elastic-plastic stiffness
matrix of the element in the local coordinate system
is derived based upon the concept of plastic node
method proposed by Ueda et al.(2,3).

After attaining the convergence for the unbalance
force {L} in Eq.(10), e.g. securing the equilibrium
state of the structure, the tangent elastic stiffness
equation of the element will become as

{4R} =(K]*{4U}* 18)
where [K)* is equal to Eq.(12) for the total Lag-
rangian formulation and to Eq.(14) for the updated
Lagrangian formulation and {4U}* is the elastic
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component of displacement increment which is
identified with the total displacement increment {4U}
if the element is still in the elastic range. Also,
since the nodal force vector is related to only the
elastic component of displacement, Eq.(18) should
be noted even in the elastic-plastic range.

If the resultant stress components in any nodal
points of the element satisfy the plastic condition of
Eq.(16), the plastic nodes are inserted and the plastic
deformation will be produced. Thus, the total displ-
acement increment {4U} is calculated by summing
up the elastic and plastic component of displacement
increment as

{dU} ={4U}+{4U}? 19
where, {4U}? is the plastic component of displacement
increment in which superscript p denotes the plastic
range.

Under the consideration that yielding function is
the plastic potential, the following definition for the
plastic component of displacement increment is made
after the i th nodal point has bocome to be plastic
by using Drucker’s normality rule (7).

WU=anlpl, ) ={ SF)

where, 4% is a positive scalar characterizing the

(20)

magnitude of the plastic displacement and {¢;} is the
outward normal vector to the yielding surface as
shown in Fig.3.

Also, the vector {¢;} in Eq.(20) can be calculated™
by using a relation between the resultant stresses
and the nodal forces(see Appendix II).

When the resultant stress components at the ¢ th
nodal point satisfy the yielding condition, the value
of the yielding function will be located at the yiel-
ding surface like in point O of Fig. 3.a, in which the
normal vector {¢:}o will be produced. With the
increasing of the external load, since the normal
forces at a plastic node move along a tangent direc-
tion to the yielding surface, the point O will move
to point A located in the outside of the yielding
surface and the normal vector {¢;} a1 will be produced.
And likewise in the next step, the point A will move
to point B which may be more different than point
A from the yielding surface, in which the normal

Jeom K. Paik and Chang Y. Kim

(<}

n
— {cﬁ}o
m
Fig. 3.a The drift of the value of the yielding
function
n

Fig. 3.b A two-step procedure for the convergence
of the yielding condition [11]

vector {¢:}p will be produced.

In this procedure, however, since the value of the
yielding function is in the outside of the yielding
surface, the normal vector {¢;} is not real and if the
drift from the yielding surface is relatively large,
any results in the subsequent procedure are no
longer reliable.

Thus, for controlling the drift of the value of the
yielding function from the yielding surface, several
approaches have been proposed, in which iterative
methods (8], one-step force correction methods (9]
and five-step procedures [10] are useful.

In this study, however, a new two-step procedure

Journal of SNAK, Vol. 26, No. 1, March 1989
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(11] is proposed and applied: As mentioned in the
previous section, the elastic nodes of the structure
are yielded one by one through the incremental
loading step so that the value of the yielding
function will be located just or very mnear in the
yielding surface. Then, as shown in Fig. 3.b, if the
value of the yielding function at the i th nodal point
is considered to be located in point O in the = th
loading step, we get the normal vector {¢,}2. Thus,
with the increasing of the external load, the value
of the yielding function will move to point A along
the tangent vector OA. Here, if the drift of point
A from the yielding surface exceeds the acceptable
tolerance, the point A is made a correction to point
A, or A, or A; by using the linearly determined
corection factor, which is also obtained in the same
manner of the calculation of the load magnification
factor indicated in Appendix II. Then, for example,
if point A is considered to be returned to point A,
the nodal forces will produce the normal vector
{¢:} 41! and the tangent vector ATEB for the (n+1) th
loading step. This approach may produce some errors
but is very simple and gives sufficient accuracy for
the practical purpose(11].

Thus, if m numbers of the nodal point in an
element are under the plastic condition, the plastic
component of displacement increment {4U}* is then

calculated by superposing Eq.(20) as
WU =% 2i(g}, m=1,2,3,4 @D

Substituting Eq.(19) and (21)
stiffness equation becomes as

into Eq.(18), the

(4R} =CKI*((4U) -5 4 (i) (22)

Neglecting the strain hardening effect, e.g. consi-
dering the elastic-fully plastic material, the following
equation should be satisfied at every plastic nodes as
far as the loading process continues.

4F;={¢;}T (4R} =0 (23)
Substituting Eq.(22) into Eq.(23),
parameter 47 is obtained as
{42} =[0I (K1 ((o)T(KI[@))~1{4U)} @4
where, [01={{¢1} (g2} - {$n} T
(4= {42 dig--d2p) T

Also, superseript (—1) denotes an inverse of the

the unknown

KBsERBEEE H#26% 8 1% 1989% 3A

matrix,

Thus, the tangent stiffness equation of the element
in the elastic-plastic range is gained by substituting
Eq.(24) into Eq.(22) again as

{4R} =[(KJ*—[KJ* (@2 (PIT(KI([®IT[KI[PpI) "

{4U}=[K)* {4U} (25)
where (K)? is the elastic-plastic stiffness matrix of
the element and [(KJ* is the elastic stiffness matrix
derived in the section 2.4.

It is clear from Eq.(25) that the elastic-plastic
stiffness matrix [K]? can be calculated by the simple
matrix operation without performing numerical
integration over the volume of the element if once
the elastic stiffness matrix(KJ¢ is obtained.

In the calculation of Eq.(25), the loading state at
every plastic nodes should be checked and when the
unloading is detected, i.e. if 44;<C0, the plastic node
should be treated as an elastic.

2.8. Transformation Matrix to the Global
Coordinate

In general, an exact formulation of the transforma-
tion matrix for the rectangular plate element is
difficult to define so that the approximate assuming
that the element is in a plane containg at least three
nodal points of the element is made in this study.

Thus, the transformation matrix (7] from the
local to the global coordinate is written in the

cartesian coordinate system shown in Fig. 4 as (6]

[ [ad
Cal |
(Ty= .- o L (26.2)
{a]
(a]
Ax'x di'y Qz'z 0 0
ay'; ay'y ay'z 0 0
(ad=| az’z az'y a2 0 0 (26.b)
0 0 0 ayy ay,

0 0 0 avy, avs
where the blank space in Eq.(26.a) indicates zero
term and a.’,, etc. are direction cosines between z’
axis in the deformed state and x axis in the original
one as shown in Fig. 4.

By applying Eq.(26), the element stiffness matrix
in the local coordinate will be tranformed to the
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Fig. 4. Local and global coordinates

global coordinate as
(K1 =(TI"{K}M(T3 @n
where (K], and (K], are the element stiffness mat-
rices in the local and global coordinate, respectively.
Thus, all element stiffness matrices in the global
coordinate are then assembled by the usual manner
to get the whole structure stiffness matrix and by
solving the stiffness equation under the specified
incremental load and/or displacement, the structural

response will be obtained.

3. Numerical Examples and Discussions

3.1. Solution strategy

Based upon the present finite element, a computer
program was completed in this study. The computer
program applies updated Lagrangian formulation for
deriving the elastic stiffiness matrix, skyline method
(12) for solving the stiffness equation and Newton-
Rapson iteration procedure {13] for eliminating the
unbalance force.

In this study, the initial deflection existed in the
plate element is treated to be initial deformation at
the nodal points so that the coordinate of the nodal
points is updated from the flat plate state in the first
loading step, in which the resultant stresses due to
the initial deformation are not taken into account.

Also, the residual stress is considered to be initial
membrane stress of the element which is directly
concerned with the initial stress stiffness matrix [(K,]
in Eq.(12) or (14) and the yielding function in Eq.
(16): As shown in Fig. 5, when the welding process
is provided along the longitudinal edges of the plate,
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an actual distribution of the residual stress is produced
by the solid line characterizing the self-equilibrium
between the tensile and compressive residual stress
and in general the magnitude of the tensile residual
stress developed in the heat affected zone reaches the
yielding stress, gy in the case of the mild steel. Here,
an idealized residual stress distribution indicated by
the dotted line is introduced and then a relation
between the tensile and compressive residual stress
is formulated by the self-equilibrium condition as
arx __ 2b;

() b—sz

where o, denotes the magnitude of the longitudinal

compressive residual stress developed in the middle
of the plate and 2b, represents the total breadth of
the strip acted by the tensile residual stress(see Fig.
5). Then, for the present numerical analysis, the
idealized distribution and magnitude of the residual
stress is inputed as nodal membrane stresses in the
first loading step in which the mesh size depends on
the breadth of the strip, &; so that the influence of
the residual stress is involved for deriving the initial
stress stiffness matrix (K,] in Eq. (12) or (14) and
checking the yielding condition of Egq. (16) but it
should be excluded for the calculation of the total
internal force {r} in Eq. (11). And even though
the transverse residual stress which is produced when
the welding process is provided in the transverse
edges of the plate, or combined the longitudinal and

transverse residual stress is existed, the same procedure

‘y _»1 |(__Urx

$

I T%t‘_ Q T
Welding l T : Tens.
Line Cl Cc: comp. | P

\

i

0 L
t
T ,"}"‘" 3 ]

)
fe- (YO -’~| — : Actual X
Idealized

-

Fig. 5. A typical distribution of the welding residual
stress
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is applied.

Within each incremental loading step, iteration
procedure to secure the equilibrium of the structure
is performed until the desired accuracy is gained.
The convergence check is carried out by comparing
the relative change of the norm of the selected
displacement vector as

WU — Uil
TR

where ||U;ll and Ul are the norms of the selected
displacement vectors in the (i—1)th and i th iteration,
respectively and e is the termination criterion which
is set by 0.01 in this study.
3.2. Accuracy Assessment and Application of
the Present Method

(1) Elastic-Plastic Large Deformation Analysis of

a Square Flat Plate Subjected to Uniform Edge
Displacement

As shown in Fig. 6, a simply supported square
plate subjected to uniform edge displacement is
analyzed. The unloaded edges can be moved in the
in-plane direction but remain straight. Only a quarter
of the plate is modelled by 5Xx5 mesh due to the
symmetry. The plate has very small initial deflection
of wo/t=0.01 of which shape is considered to be
sinuisoidal curve where wp is the amplitude of the
initial deflection at center.

Fig. 6.a and 6.b show the load-central deflection
curve for the typical thin and thick plates, respecti-
vely and also the yielding history of the plate is
presented in the same figure. The present results are
compared to the conventional finite element solution
by Ueda et al. [14]). They applied 10x 10 mesh model
for a quarter of the plate using the triangular plane-
shell element with three corner nodal points and
subdivided the plate thickness into 20 layers so that
they took the effect of the expanded yielding zone
in the plate thickness direction into consideration.

For the thin plate shown in Fig. 6.a, after the
elastic buckling takes place in which the theoretical
elastic buckling strength ¢../oo is 0.4, the plastic
nodes are started in the corner of the unloaded edges
where the large membrane stresses are developed due

to the condition of straight boundary and expanded
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Fig. 6.8 The load-central deflection curve of a

simply supported square plate subjected to
uniform edge displacement(unloaded edges
remain straight)
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Fig. 6.b The load-central deflection curve of a
simply supported square plate subjected to
uniform edge displacement (unloaded edges
remain straight)

to the center with the increasing of the bending
stresses due to the large deflection. On the other
hand, the thick plate shown in Fig. 6.b shows the
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elastic-plastic buckling phenomenon in which the
teoretical elastic buckling strength, o¢/00=0.9 and
since the membrane stresses are dominant everywhere
of the plate the plastic nodes are started in the corner
of the unloaded edges and also at the center.

Comparing the present and conventional finite

element solution, the present method slightly overe-
stimates the ultimate strength of the plate. This is
due that the mesh size of the present modelling is
somewhat coarse and the fully plastic condition
through the cross-section is used as a yielding
condition in this study. However, the accuracy is
sufficient for the practical purpose and it is clear that
the present method gives the reliable buckling and
ultimate strength of the plate. For this example, the
computing time was about 5 minitues by PRIME 63350
computer.

(2) Influence of the Magnitude of the Initial
Deflection on the Ultimate Strength of a
Square Plate Subjected to Uniform Edge
Displacement

The elastic-plastic large deformation behaviour of

a square plate subjected to uniform edge displacement
is also analyzed varying the magnitude of the initial
deflection whose shape is also considered to be
sinuisoidal curve as shown in Fig. 7. The boundary
of the plate is simply supported and the in-plane
displacements of the unloaded edges are unrestrained

so that little membrane stresses in the transverse

e,

2 o, 02 C.l 0405 L6 C7 0.2 0.2 1.0 i.11.2
E/E,

Fig. 7.8 The load-shortening curve of a simply
supported square plate subjected to uniform
edge displacement (unloaded edges are
unrestrained)
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Fig. 7.b The load-shortening curve of a simply
supported plate subjected to uniform edge
displacement (unloaded edges are unrestr-
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Fig. 7.¢ Influence of the magnitude of the initial
deflection on the ultimate strength of a
simply supported square plate subjected to
uniform edge displacement(unloaded edges
are unrestrained)

direction may occur. 5x5 mesh modelling for a
quarter of the plate is also adopted.

Fig. 7.a and 7.b represent the load-shortening
curve, where ¢ presented in the figure is the fully
plastic strain, e=0/E, for two plates with divers
initial deflections and Fig. 7.c shows the influence
of the magnitude of the initial deflection on the
ultimate strength of the plate.

Fig. 7 indicates that with the increasing of the
initial deflection, the in-plane stiffness of the plate
decreases from the beginning and a large amount of
the ultimate strength is reduced. The present results

are also compared to the conventional finite element
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It is also clear
the

accurate elastic-plastic large deformation response up

solution by Harding et al. (15].
from Fig. 7 that the present method gives
to the ultimate strength of the plate with the initial
deflection. For this example, the computing time
was about 3~5 minitues by PRIME 6350 computer.
(3) Influence of the Residual Stress on the Ultimate
Strength of a Square Plate Subjected to
Uniform Edge Displacement
The influence of the existence of residual stress
mainly due to welding on the ultimate strength is
also investigated varying the magnitude of the
residual stress. The shape of the initial deflection,
mesh size, the boundary and loading condition are
identified with the case of (1) but the magnitude of
the initial deflection is set as wg/t=0.05 and the
plate has the longitudinal residual stress.

Fig. 8.2 and 8. b represent the load-central deflection
curve for two plates with divers residual stresses
and Fig. 8.c¢ shows the influence of the residual
stress on the ultimate strength of the plate. Fig. 8
indicates that with the increasing of the residual
stress, both buckling and ultimate strength are
reduced by amount of about the magnitude of the
compressive residual stress. The present results are
also compared to the approximate semi-analytical
Little (16] which wused Von Mises

condition as a yielding condition expressed in terms

solution by

The load-central deflection curve of a
simply supported square plate subjected to
uniform edge displacement(unloaded edges
remain straight)
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Fig. 8.b The load-central deflection curve of a
simply supported square plate subjected to
uniform edge displacement (unloaded edges

remain straight)
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Fig. 8.¢ Influence of the magnitude of the residual

stress on the ultimate strength of a simply
supported square plate subjected to uniform
edge displacement(unloaded edges remain
straight)

of only membrane stress components. Thus, for thick
plates shown in Fig. 8.b, in which the membrane
stresses are dominant the present results are in good
agreement with Little’s solution but for thin plates

shown in Fig. 8.a, since both the membrane and
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bending stresses are dominant, Little’s approach
overestimates the ultimate strength. For this example,
the computing time was also about 3~5 minitues by

PRIME 6350 computer.
4. Conclusion

Through some numerical examples presented in
this study, it is possible to make a conclusion as

(1) The present method gives sufficient accuracy
for the problems of the elastic-plastic large
deformation analysis up to the ultimate limit
state of plates with initial imperfections.

(2) The computing time is reasonable since for the
case of 5x5 mesh modelling, about 3~5 mini-

tues by PRIME 6350 computer were required.
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Appendix I. The Load Magnification Factor

Due to the acting of the incremental prescribed
load {4R} in the nth loading step, if the total and

the increment of the resultant stress components are
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defined by o}, {0s} and {do}, {dos,
the magnitude of the incremental external load in
the next loading step which will satisfy the yielding
condition in a nodal point is given by S{4R} where
a multiplier 8 is defined as the positive load magni-
fication factor:
From the yielding condition of Eq.(16), the follo-
wing equation emerges.
(-t 3dn) 2 — (n+ Bdny) (ny+ pdny) + (ny+ Bdny)
4312y + Bdney) - ((mo-fdm,)*?
— (my+3dmy) (my+dmy) + (my+pdm,)?
+3(may+5dmy, )41 —1=0 (A1)
Neglecing the infinitesimal terms, Eq.(A.1) becomes

respectively,

as

(a+ 52+ (B+ —25—?>5+C+ JF—1=0
(A.2)
where, A=dn’—dn dn,~+An+34n%,
B=2n,—n)dn,+ Cny—n.) dny+6n,ydn.,
C=ni—n.n,+n%+3n,
D=dm?—dm.dmy~dm%:4-34m?2,
E=(2m,—m,) dme~+ Qmy—m.) dmy+6myydm.y
F=ml—mmy+mi+3m?,
Thus, the positive load magnification factor g is
obtained as

' A
5= —arT N at—Adaag
2(11

(A.3)
where, ;y=A+ 2~D/Fﬁ’ a223+%,
az=C+ VF —1

In actual numerical procedure, the smallest value
of 3 which yields only one nodal point acting by
the biggest stresses among all the elastic nodes is
determined and also since the response is nonlinear,
it is recomended that the value of g less than 1.0

is set.

Appendix II. The Outward Normal
Vector {¢}

Eliminating the unbalance force, the stiffness
equation of the element is given by Eq.(10) as
{dR}=(K]¢ {4U}* (A0

and
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(4R} =[K,Je (dW; (A.5)
where subscript w denotes the vetcor or matrix for
the out-of-plane component.

Also, the stress-displacement relation in the ith
nodal point of the element is written by Eq.(17) as

{da;} =(D3e (B {4U}* (A.6)

{dosi} =—£2/6 (D)* [(Bsl {dW}° (A.7)

Removing the rigid body motion, Eq.(A.4), (A.
5), (A.6) and (A.7) become as

{4R}=[K*]e {4U*j* (A.8)
(4R =LK {AWH)e (A.9
{dos} =[DJe (BY) [4U*)¢ (A.10)
{daei} =—2%/6(D) (B}] (dW* (A.1D

where asterisk indicates reduced degrees of freedom
after removing the rigid body motion of the element.

Calculating the nodal displacements {4U%}¢ and
{4W*}¢ being got rid of the rigid body motion from
Eq.(A.8) and (A.9) and substituting them into Eq.
(A.10) and (A.11), the following relation between
the resultant stresses and the nodal forces is obtained.

(4o} =(DJe (BF2 (CK*2T (K*29)™! (K*1T (4R}

(A.12)
das:} =—£2/60D2¢ (B} (TK2eT [KE))"I(K¥)T
{4R.} (A.13)

Also, the vector [¢;] reads

o=l ()T )
(A1)
where the multiplying value of ¢} was appeared

because the yielding condition of Eq.(16) was
expressed by the nondimensional function.

1 . oF; oF;

n Eq.(A.14), {——am } and {Mam"_ } are calculated
by differentiating the yielding function of Eq.(16)
with regard to the stress components. Thus,

oF;
ok - {»a}—‘— }: Lori—oyi, 20y—0z, 672y} T

(A.15)
2, 3F. — gy L X
72X} { aﬂbi } { 3 V;S (20'be ﬂ'ybx)’
ao gy, 200 T
S Qasui— o), 200 o} (A.16)

where, S=a25;—0mi 0ypit025+37%,

Also, { g; } and {gg:'} are given from Eq.(A.
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12) and (A.13) as Then, the normal vector {¢;} in the ith nodal
{ do; }:ED]‘ EB:k] ((K*3¢T [K¥3€)=1 [K#)eT point is calculated by substituing Eq. (A.15), (A.
9R 16), (A.17) and (A.18) into Eq. (A.14).
(A.17)
Oasi — e * CR K e ey~
[ Do} = —p/6iD)e (BE) ((KENT (K™
(KT (A.18)
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