• 제목/요약/키워드: core-shell structures

검색결과 95건 처리시간 0.033초

Dynamic results of GNPRC sandwich shells

  • E. Mohammad-Rezaei Bidgoli;M. Arefi
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.263-273
    • /
    • 2023
  • This paper investigates dynamic characteristics of a graphene nanoplatelets reinforced composite (GNPRC) sandwich doubly curved shell based on the first-order shear deformation theory (FSDT) and Hamilton's principle. The sandwich doubly curved shell is fabricated from a core made of honeycomb materials sandwiched by composite GNPs reinforced face-sheets. Effective materials properties of composite face-sheets are assumed to vary based on Halpin-Tsai micromechanical models and rule of mixture. Furthermore, the material properties of honeycomb core are estimated using Gibson's formula. The fundamental frequencies of the shell are computed with changes of main geometrical and material properties such as amount and distribution type of graphene nanoplatelets, side length ratio, thickness to length ratio of and side length ratio of honeycomb. The Navier's technique is presented to obtain responses. Accuracy and trueness of the present model and analytical solution is confirmed through comparison of the results with available results in literature. It is concluded that an increase in thickness to length ratio yields a softer core with lower natural frequencies. Furthermore, increase in height to length ratio leads to significant decrease in natural frequencies.

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • 김경남;정소희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator

  • Rostami, Rasoul;Mohamadimehr, Mehdi;Rahaghi, Mohsen Irani
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.225-237
    • /
    • 2019
  • In this research, the dynamic stability and nonlinear vibration behavior of a smart rotating sandwich cylindrical shell is studied. The core of the structure is a functionally graded material (FGM) which is integrated by functionally graded piezoelectric material (FGPM) layers subjected to electric field. The piezoelectric layers at the inner and outer surfaces used as actuator and sensor, respectively. By applying the energy method and Hamilton's principle, the governing equations of sandwich cylindrical shell derived based on first-order shear deformation theory (FSDT). The Galerkin method is used to discriminate the motion equations and the equations are converted to the form of the ordinary differential equations in terms of time. The perturbation method is employed to find the relation between nonlinear frequency and the amplitude of vibration. The main objective of this research is to determine the nonlinear frequencies and nonlinear vibration control by using sensor and actuator layers. The effects of geometrical parameters, power law index of core, sensor and actuator layers, angular velocity and scale transformation parameter on nonlinear frequency-amplitude response diagram and dynamic stability of sandwich cylindrical shell are investigated. The results of this research can be used to design and vibration control of rotating systems in various industries such as aircraft, biomechanics and automobile manufacturing.

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young;Lee, Gwang-Yeob;Oh, Hye-Ryeong;Kim, Hyeon-Ah;Kim, Song-Yi;Lee, Min-Ha
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.409-413
    • /
    • 2016
  • Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.

Fabrication of SnO2/Zn Core-shell Nanowires and Photoluminescence Properties

  • Kong, Myung Ho;Kwon, Yong Jung;Cho, Hong Yeon;Kim, Hyoun Woo
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.301-307
    • /
    • 2014
  • We have fabricated $SnO_2$/Zn core-shell nanowires by employing a sputtering technique with a Zn target. Scanning electron microscopy indicated that the surface of the nanowires became rougher by the coating. X-ray diffraction of the coated nanowires exhibited the hexagonal Zn diffraction peaks. TEM image of coated structures showed that shell layer was mainly comprised of hexagonal Zn phase. EDX spectra suggested that the shell layer consisted of Zn elements. The photoluminescence spectrum of the coated nanowires in conjunction with Gaussian fitting analysis revealed that the emission was disconvoluted with three Gaussian functions, which are centered at 2.1 eV in the yellow region, 2.4 eV in the green region, and 3.3 eV in the ultraviolet region. We speculated the possible mechanisms of these emission peaks.

A novel approach to fabricate Cu-Ni core-shell microwires

  • Song, Chang-Hyun;Kim, Jong-Woong
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.234-234
    • /
    • 2015
  • Metallic microwires are a promising material for use as a filler in various conductive composite structures. Because of their high anisotropy in shape, a low percolation threshold could be achieved, which is beneficial to a low-cost fabrication and better electrical conductivity even under an extremely low solid content. Here we developed a facile method to fabricate the Cu (core)-Ni (shell) microwires.

  • PDF

Type-II ZnO/ZnSe 코어/쉘 이종 구조 합성 및 광촉매활성 평가 (Synthesis and Characteristics of Type-II ZnO/ZnSe Core/Shell Heterostructures for High Efficient Photocatalytic Activity)

  • 이우형;최광일;강동천;백수웅;이석호;임철현
    • 한국전기전자재료학회논문지
    • /
    • 제27권3호
    • /
    • pp.178-183
    • /
    • 2014
  • Recently, various type of nanomaterials such as nanorod, nanowire, nanotube and their core/shell nanostructures have attracted much attention in photocatalyst due to their unique properties. Among them, Type-II core/shell heterostructures have extensively studied because it has exhibited improved electrical and optical properties against their single-component nanostructure. Such structures are expected to offer high absorption efficiency and fast charge transport due to their stepwised energetic combination and large internal surface area. Thus, it has been considered as potential candidates for high efficient photocatalytic activity. In this work, we introduce a novel chemical conversion process to synthesize Type-II ZnO/ZnSe core/shell heterostructures. A plausible conversion mechanism to ZnO/ZnSe core/shell heterostructres was proposed based on SEM, XRD, TEM and XPS analysis. The ZnO/ZnSe heterostructures exhibited excellent photocatalytic activity toward the decomposition of RhB dye compared to the ZnO nanorod arrays due to enhanced light absorption and the type-II cascade band structure.

리튬이차전지용 고용량 음극을 위한 구리@코발트산화물 코어-쉘 수지상 기반 3차원 다공성 박막 (Three-dimensional porous films consisting of copper@cobalt oxide core-shell dendrites for high-capacity lithium secondary batteries)

  • 주소영;최윤주;최우성;신헌철
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.104-114
    • /
    • 2023
  • Three dimensional (3D) porous structures consisting of Cu@CoO core-shell-type nano-dendrites were synthesized and tested as the anode materials in lithium secondary batteries. For this purpose, first, the 3D porous films comprising Cu@Co core-shell-type nano-dendrites with various thicknesses were fabricated through the electrochemical co-deposition of Cu and Co. Then the Co shells were selectively anodized to form Co hydroxides, which was finally dehydrated to get Cu@CoO nanodendrites. The resulting electrodes exhibited very high reversible specific capacity almost 1.4~2.4 times the theoretical capacity of commercial graphite, and excellent capacity retention (~90%@50th cycle) as compared with those of the existing transition metal oxides. From the analysis of the cumulative irreversible capacity and morphology change during charge/discharge cycling, it proved that the excellent capacity retention was attributed to the unique structural feature of our core-shell structure where only the thin CoO shell participates in the lithium storage. In addition, our electrodes showed a superb rate performance (70.5%@10.8 C-rate), most likely due to the open porous structure of 3D films, large surface area thanks to the dendritic structure, and fast electron transport through Cu core network.

산화니켈 및 탄소나노튜브/산화니켈 복합체 가스센서의 제작과 황화수소 감지 특성 (Fabrication and H2S Sensing Property of Nickel Oxide and Nickel Oxide-Carbon Nanotube Composite)

  • 양하늘;;;박지환;홍순현;윤홍관;김천중;김도진
    • 한국재료학회지
    • /
    • 제28권8호
    • /
    • pp.466-473
    • /
    • 2018
  • Nickel oxide(NiO) thin films, nanorods, and carbon nanotube(CNT)/NiO core-shell nanorod structures are fabricated by sputtering Nickel at different deposition time on alumina substrates or single wall carbon nanotube templates followed by oxidation treatments at different temperatures, 400 and $700^{\circ}C$. Structural analyses are carried out by scanning electron microscopy and x-ray diffraction. NiO thinfilm, nanorod and CNT/NiO core-shell nanorod structurals of the gas sensor structures are tested for detection of $H_2S$ gas. The NiO structures exhibit the highest response at $200^{\circ}C$ and high selectivity to $H_2S$ among other gases of NO, $NH_3$, $H_2$, CO, etc. The nanorod structures have a higher sensing performance than the thin films and carbon nanotube/NiO core-shell structures. The gold catalyst deposited on NiO nanorods further improve the sensing performance, particularly the recovery kinetics.

Synthesis of Vertically Aligned SiNW/Carbon Core-shell Nanostructures

  • 김준희;김민수;김동환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.488.2-488.2
    • /
    • 2014
  • Carbon-based materials such as carbon nanotubes and graphene have emerged as promising building blocks in applications for nanoelectronics and energy devices due to electrical property, ease of processability, and relatively inert electrochemistry. In recent years, there has been considerable interest in core-shell nanomaterials, in which inorganic nanowires are surrounded by inorganic or organic layers. Especially, carbon encapsulated semiconductor nanowires have been actively investigated by researchers in lithium ion batteries. We report a method to synthesize silicon nanowire (SiNW) core/carbon shell structures by chemical vapor deposition (CVD), using methane (CH4) as a precursor at growth temperature of $1000{\sim}1100^{\circ}C$. Unlike carbon-based materials synthesized via conventional routes, this method is of advantage of metal-catalyst free growth. We characterized these materials with FE-SEM, FE-TEM, and Raman spectroscopy. This would allow us to use these materials for applications ranging from optoelectronics to energy devices such as solar cells and lithium ion batteries.

  • PDF