• 제목/요약/키워드: core-shell composite particle

검색결과 35건 처리시간 0.024초

아크릴계 복합입자 바인더의 제조와 플라즈마 처리영향 (Synthesis and Effect of Plasma Treatment of Acrylic Composite Particle Binder)

  • 심동현;설수덕
    • 폴리머
    • /
    • 제32권3호
    • /
    • pp.276-283
    • /
    • 2008
  • 단량체의 종류(MMA, EA, BA, St), 단량체의 중량비($80/20{\sim}20/80$) 등을 변화시켜 core shell 바인더를 제조하구 여기에 플라즈마 처리하여 물성을 향상시켰다. 각 소재별로 플라즈마 처리시간($1{\sim}10\;s$)을 변화시켜 인장강도, 접촉각 및 접착박리강도를 측정하여 최적의 core shell 바인더의 표면처리 조건을 산출하였다. 중합에서는 바인더의 종류와 조성에 관계없이 개시제는 APS, 반응온도 $85^{\circ}C$에서 0.3 wt%의 유화제를 사용했을 때 가장 높은 전환율을 나타내었고, 중합체의 유리전이온도는 공중합체의 단일 전이 곡선에 비하여 core shell 바인더는 2개 이상의 전이 곡선을 얻었다. Core shell 바인더에 플라즈마 처리 전 후의 접촉각 변화는 PEA/PSt의 경우 5초 이내에 38%의 완만한 감소를 나타내었고, 처리하지 않은 경우는 감소율이 급격히 $0^{\circ}$에 도달하였다. 인장강도는 가장 높은 값을 가지는 PSt/PMMA의 경우 $46.71{\sim}46.27\;kg_f$/2.5 cm로 처리전 후 모두 근사한 값을 나타내었다. 접착박리강도는 PEA/PMMA의 경우 처리 전 $7.89\;kg_f$/2.5 cm에서 처리 후 $14.44\;kg_f$/2.5 cm로 약 2배 이상 증가하였다. 전체적으로 접착박리강도의 크기는 shell 단량체가 MMA인 core 단량체에 대하여 PEA>PBA>PSt의 순으로 되었다.

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

고무상입자가 치과용 복합레진의 물리적 성질에 미치는 영향 (EFFECT OF CORE-SHELL PARTICLES ON PHYSICAL PROPERTIES OF DENTAL COMPOSITES)

  • 최경규
    • Restorative Dentistry and Endodontics
    • /
    • 제23권2호
    • /
    • pp.690-700
    • /
    • 1998
  • Rubber-toughened particles which are used in the field of chemical engineering are used to increase the fracture toughness of thermoset resin. The application of Core-Shell particles, one of rubber-toughened particles, as a filler for dental composite or restoration have not been examined. The purpose of this study was to evaluate possible use of Core-Shell particles for dental composite, and the hypothesis was that additional toughening mechanisms are activated by the addition of Core-Shell particles. After blending 50vol% quartz with Bis-GMA/TEGDMA resin matrix, the experimental resins were made by the addition of Core-Shell particles with varied content level as 0, 2.5, 5, 7.5, 10, 12.5, 15, and 20wt%. Fracture toughness was determined on three-point bending specimen with single-edge notch according to ASTM-E 399. Also, flexural properties, that is, strength and modulus were measured by three-point bending testing. Fractogragh of fracture toughness specimen was observed using SEM (JEOL 6400 SEM, MA). The following results from this study were obtained ; 1. Fracture toughness of composite resin added 2.5wt% Core-Shell particles was significantly higher than control group ($p{\leq}0.05$). 2. Flexural properties were decreased with increasing Core-Shell particle content, which showed a correlation statistically ($p{\leq}0.05$). 3. A toughening mechanism such as lamination and microcrack was observed in specimen determined high fracture toughness. 4. The dispersion of Core-Shell itself and quartz filler particles was limited present high content of Core-Shell particles, which decreased a resulting mechanical properties of composites. These results suggest that adequate Core-Shell particles can be used to enhance mechanical properties included toughening for dental composites.

  • PDF

계면활성제 Sodium Dioctyl Sulfosuccinate (EU-DO133L)을 사용한 이산화규소/스티렌의 코어-셀 고분자의 합성 (Synthesis on the Core-Shell Polymer of Silicone Dioxide/Styrene Using Sodium Dioctyl Sulfosuccinate (EU-DO133L) as a Surfactant)

  • 김덕술;박근호
    • 한국응용과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.183-187
    • /
    • 2010
  • Core-Shell polymers of silicone dioxide-styrene system were prepared by sequential emulsion polymerization. In inorganic/organic Core-Shell composite particle polymerization, silicone dioxide adsorbed by surfactant sodium dioctyl sulfosuccinate (EU-DO133L) was prepared initially and then core silicone dioxide was encapsulated emulsion by sequential emulsion polymerization using styrene at the addition of potassium persulfate (KPS) as an initiator. We found that $SiO_2$ core shell of $SiO_2$/styrene structure was formed when polymerization of styrene was conducted on the surface of $SiO_2$ particles, and the concentration sodium dioctyl sulfosuccinate (EU-DO133L) was 0.5~2.0g. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).

In-Situ Synthesis of PS/(-)Silica Composite Particles in Dispersion Polymerization Using An ($\pm$) Amphoteric Initiator

  • Hwang, Deok-Ryul;Hong, Jin-Ho;Lee, Jeong-Woo;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • 제16권4호
    • /
    • pp.329-336
    • /
    • 2008
  • Core/shell ($\pm$)PS/(-)silica nanocomposite particles were synthesized by dispersion polymerization using an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2,2-methylpropionamidine] ($HOOC(CH_2)_2HN$(HN=) $C(CH_3)_2CN$=NC $(CH_3)_2C$(=NH)NH $(CH_2)_2COOH$), VA-057. Negatively charged (-6.9 mV) silica was used as the stabilizer. The effects of silica addition time and silica and initiator concentrations were investigated in terms of polymerization kinetics, ultimate particle morphology, and size/size distribution. Uniform hybrid microspheres with a well-defined, core-shell structure were obtained at the following conditions: silica content = 10-15 wt% to styrene, VA-057 content=above 2 wt% to styrene and silica addition time=0 min after initiation. The delay in silica addition time retarded the polymerization kinetics and broadened the particle size distribution. The rate of polymerization was strongly affected by the silica content: it increased up to 15 wt% silica but then decreased with further increase in silica content. However, the particle size was only marginally influenced by the silica content. The zeta potential of the composite particles slightly decreased with increasing silica content. With increasing VA-057 concentration, the PS microspheres were entirely coated with silica sol above 1.0 wt% initiator.

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries

  • Kwon, Hae-Jun;Son, Jong-In;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.74-81
    • /
    • 2021
  • Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.

코어-쉘 구조의 산화철/그래핀 복합체 제조 및 슈퍼커패시터 응용 (Preparation of Core-Shell Structured Iron Oxide/Graphene Composites for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제14권3호
    • /
    • pp.65-72
    • /
    • 2018
  • Core-shell structured $Fe_3O_4/graphene$ composites were synthesized by aerosol spray drying process from a colloidal mixture of graphene oxides and $Fe_3O_4$ nanoparticles. The structural and electrochemical performance of $Fe_3O_4/graphene$ were characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanometric discharge-charge method. Core-shell structured $Fe_3O_4/GR$ composites were synthesized in different mass ratios of $Fe_3O_4$ and graphene oxide. The composite particles were around $3{\mu}m$ in size. $Fe_3O_4$ nanoparticles were encapsulated with a graphene. Morphology of the $Fe_3O_4/graphene$ composite particles changed from a spherical ball having a relatively smooth surface to a porous crumpled paper ball as the content of GO increased in the composites. The $Fe_3O_4/GR$ composite fabricated at the weight ratio of 1:4 ($Fe_3O_4:GO$) exhibited higher specific capacitance($203F\;g^{-1}$) and electrical conductivity than as-fabricated $Fe_3O_4/GR$ composite.

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • 제4권4호
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • 한국응용과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.

Effect of Poly(butyl acrylate)-Poly(methyl methacrylate) Rubber Particle Texture on the Toughening Behavior of Poly(methyl methacrylate)

  • Chung, Jae-Sik;Park, Kyung-Ran;Wu, Jong-Pyo;Han, Chang-Sun;Lee, Chan-Hong
    • Macromolecular Research
    • /
    • 제9권2호
    • /
    • pp.122-128
    • /
    • 2001
  • Monodisperse composite latex particles with size of ca. 300 nm, which consist ofn-butyl acrylate as a soft phase and methyl methacrylate as a hard phase with different morphology, were synthesized by seeded multi-stage emulsion polymerization. Three types of composite latex particles including random-, core/shell-, and gradient-type particles were obtained by using different monomer feeding methods during semi-batch emulsion polymerization. Effect of poly(butyl acrylate)-poly(methyl methacrylate) rubber particle morphology on the mechanical and rheological properties of rubber toughened poly(methyl methacrylate) was investigated. Among three different rubber particles, the gradient-type rubber particle showed better toughening effect than others. No significant variation of rheological property of poly(methyl methacrylate)/rubber blends was observed for the different rubber particle morphology.

  • PDF