• Title/Summary/Keyword: core-hole effect

Search Result 30, Processing Time 0.027 seconds

Effect of verification core hole on tip capacity (확인코어공이 현장타설말뚝의 선단지지력에 미치는 영향)

  • Youn, Hee-Jung;Tonon, Fulvio
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.435-441
    • /
    • 2010
  • In this study, numerical simulations were carried out to investigate the effect of verification core hole on the shaft tip capacity. The verification core extreted at shaft tip may deteriorate the shaft tip capacity when the clay shales (Taylor Marl) surrounding the shaft degrades and the empty core hole remains unfilled. Series of finite element analyses were conducted using Mohr-Coulomb model with total stress material parameters that were obtained from laboratory testing. The numerical analyses indicate that the shaft tip capacity does not decrease for most cases, and the maximum reduction does not exceed 5%.

  • PDF

Buckling Behavior of Sandwich Composite Columns by Varying Hole Size and Hole Position (원공 크기 및 원공 위치에 따른 샌드위치 복합재 기둥의 좌굴 거동)

  • Lee, Sang-Jin;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The study investigated the buckling behavior of sandwich composite columns with different hole sizes and hole positions when they were applied to a compressive load. The columns consisted of 1.7mm thick faces of glass fabric/epoxy and 23mm, 37mm, 48mm, and 61mm thick cores of urethane-foam. Different hole sizes with the diameter of 25mm and 38mm were considered in this experiment. To evaluate the effect of hole position on the buckling behavior, we considered three types of hole position: 25mm diameter hole located at the center, 25mm diameter hole at 1/4 position from the center to the end of the column, and 25mm diameter hole at 1/2 position from the center to the end of the column. According to the results, buckling and maximum loads of the column having 25mm diameter hole were lower by 10% compared to those of the column without hole, whereas the loads for the column having 38mm diameter hole were 30% less than those of the column without hole. Hole position appeared to have no effect on buckling and maximum loads. Major failure modes were observed as follows: the core shear failure for the thin columns having 23mm and 37mm thick cores, and the face-core debonding for the thick columns having 48mm and 61mm thick cores.

Numerical Analysis of the Effect of Hole Size Change in Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution (하부지지구조물 바닥판 구멍크기 변경이 원자로 노심 입구 유량분포에 미치는 영향에 관한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.905-911
    • /
    • 2015
  • In this study, to examine the effect of a hole size change(smaller hole diameter) in the outer region of the lower-support-structure-bottom plate(LSSBP) on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.15. The predicted results were compared with those of the original LSSBP. Through these comparisons, it was concluded that a more uniform distribution of the mass flow rate at the core-inlet plane could be obtained by reducing the hole size in the outer region of the LSSBP. Therefore, from the nuclear regulatory perspective, design change of the hole pattern in the outer region of the LSSBP may be desirable in terms of improving both the mechanical integrity of the fuel assembly and the core thermal margin.

Integrity Test of DCM Treated Soils with a Cross-hole Sonic Logging (시추공간 음파검층법을 이용한 심층혼합 개량지반의 건전도 조사)

  • 김진후;조성경
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.73-78
    • /
    • 2001
  • Soundness evaluation of a structure being constructed under the sea is usually difficult. In this study, a cross-hole sonic logging(CSL) which have been used for non-destructive test of concrete piles is adopted for the integrity test and monitoring of DCM(deep cement mixing) treated soils. Chemical and physical characteristics of raw ground materials are analysed to delineate ground environmental effects on the strength of DCM treated soils. In order to convert cross-hole sonic logging data into compressive strength, correlations between compressive strengths and wave velocities of core samples have been obtained. It is found that there is little effect of ground environment on the strength of the DCM treated soils, and the density distribution of core samples and cross-hole logging data show that a defective zone may exist in the DCM treated soils. With the time lapse, however, the defective zone has been cured and consequently, compressive strength of the DCM treated soils increases and satisfies the design parameter. From this study it can be concluded that the cross-hole sonic logging can be used for the integrity test as well as monitoring the curing stage of the structures, successfully.

  • PDF

Effect on the Characteristics and Control Performance due to the Ventilation Hole Design of the Traction Motor (냉각 통풍홀 설계로 인한 견인 전동기 특성 및 제어 성능 영향 연구)

  • Kim, Ki-Chan;Lee, Jeong-Il;Kwon, Jung-Lock
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.801-803
    • /
    • 2001
  • On this study the motor design method with fairly good characteristics and control capability as well as cooling capability is presented with considering the magnetic effect due to ventilation hole, which is installed to prevent the temperature rise. When the input voltage rises due to critical variation in traction power supply system, the final ventilation hole is presented by checking the inductance parameter with clarifying the relation between saturation of the motor core and the ventilation hole.

  • PDF

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime

  • Yu, Eunseon;Son, Baegmo;Kam, Byungmin;Joh, Yong Sang;Park, Sangjoon;Lee, Won-Jun;Jung, Jongwan;Cho, Seongjae
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.829-837
    • /
    • 2019
  • The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.

Evaluation on Effect of Hole Machining for Application of M1.0 Subminiature Screw to CFRP Laminate Using FEM (FEM을 이용한 M1.0 초소형 나사 적용을 위한 CFRP 적층판의 홀 가공 영향평가)

  • Kim, Dae Young;Kim, Hee Seong;Kim, Ji Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.95-99
    • /
    • 2017
  • The recent development of core techniques in the IT industry can be summarized as a technical advancement for safety and convenience, and mechanical technology for being "eco-friendly" and lightweight. Under these circumstances, research of lightweight material has become attractive. In this study, CFRP (Carbon Fiber Reinforced Plastic) laminate specimens are subjected to a tensile test using the UTM(Universal Testing Machine, AG-IS 100 kN) to estimate their mechanical properties in terms of the Hole machining impact evaluation. The FEM (Finite Elements Method) analysis method is applied and the material properties obtained from basic experiments such as the Tensile test, the compressive test, and the shear test. CFRP materials properties from a previous study, as well as a finite element analysis program for Hole machining CFRP was compared with the experiments.

전파 Jet 3C449의 동역학적 모형

  • Jeong, Hong-Dae;Yun, Hong-Sik;Choe, Seung-Eon
    • Publications of The Korean Astronomical Society
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1989
  • A jet plasmoid model for 3C.449 has been constructed by introducing a plasma.ejecting black hole orbiting around the center of its parent cD galaxy. We examined the characteristics of the jet trajectory by varying the values of (1) orbiting radius and velocity of the black hole, (2) plasma ejection velocity, (3) size, mass and space velocity of the parent galaxy, (4) size of the galactic core and (5) the density of the intergalactic medium. In our model calculation the effect of the gravity by the parent galaxy and the ram pressure by the intergalactic medium have been taken in account. It is found that our dynamical model accounts reasonably well for the observed structure of 3C449. Our proposed model suggests that the buoyancy force near the galactic center plays an important role in the formation of the curved structure of the radio jet.

  • PDF

Electrical characteristics of Field Effect Thin Film Transistors with p-channels of CdTe/CdHgTe Core-Shell Nanocrystals (CdTe/CdHgTe 코어쉘 나노입자를 이용한 P채널 전계효과박막트렌지스터의 전기적특성)

  • Kim, Dong-Won;Cho, Kyoung-Ah;Kim, Hyun-Suk;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1341-1342
    • /
    • 2006
  • Electrical characteristics of field-effect thin film transistors (TFTs) with p-channels of CdTe/CdHgTe core-shell nanocrystals are investigated in this paper. For the fabrication of bottom- and top-gate TFTs, CdTe/CrHgTe nanocrystals synthesized by colloidal method are first dispersed on oxidized p+ Si substrates by spin-coating, the dispersed nanoparticles are sintered at $150^{\circ}C$ to form the channels for the TFTs, and $Al_{2}O_{3}$ layers are deposited on the channels. A representative bottom-gate field-effect TFT with a bottom-gate $SiO_2$ layer exhibits a mobility of $0.21cm^2$/ Vs and an Ion/Ioff ratio of $1.5{\times}10^2$ and a representative top-gate field-effect TFT with a top-gate $Al_{2}O_{3}$ layer provides a field-effect mobility of $0.026cm^2$/ Vs and an Ion/Ioff ratio of $2.5{\times}10^2$. $Al_{2}O_{3}$ was deposited for passivation of CdTe/CdHgTe core-shell nanocrystal layer, resulting in enhanced hole mobility, Ior/Ioff ratio by 0.25, $3{\times}10^3$, respectively. The CdTe/CdHgTe nanocrystal-based TFTs with bottom- and top gate geometries are compared in this paper.

  • PDF