DOI QR코드

DOI QR Code

하부지지구조물 바닥판 구멍크기 변경이 원자로 노심 입구 유량분포에 미치는 영향에 관한 수치해석

Numerical Analysis of the Effect of Hole Size Change in Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution

  • 이공희 (한국원자력안전기술원 고리주재검사팀) ;
  • 방영석 (한국원자력안전기술원 안전평가실) ;
  • 정애주 (한국원자력안전기술원 원자력안전연구실)
  • Lee, Gong Hee (KORI Residence Inspection Team, Korea Institute of Nuclear Safety) ;
  • Bang, Young Seok (Safety Evaluation Department, Korea Institute of Nuclear Safety) ;
  • Cheong, Ae Ju (Nuclear Safety Research Department, Korea Institute of Nuclear Safety)
  • 투고 : 2015.04.13
  • 심사 : 2015.08.18
  • 발행 : 2015.11.01

초록

본 연구에서는 하부지지구조물 바닥판의 외곽영역에 위치한 구멍의 크기 변경(구멍 직경 감소)이 노심 입구 유량분포에 미치는 영향을 조사하기 위해 상용 전산유체역학 소프트웨어인 ANSYS CFX R.15를 사용하여 계산을 수행하였고, 기존 바닥판 구멍 형태에 대한 계산 결과와 비교하였다. 결론적으로 하부지지구조물 바닥판의 외곽영역에 위치한 구멍의 직경 감소를 통해 노심 입구에서 보다 균일한 유량 분포를 얻을 수 있었다. 따라서 원자력 규제측면에서 볼 때 본 연구에서 제시한 하부지지구조물 바닥판의 외곽영역 구멍 형태의 설계 변경은 연료집합체의 기계적 건전성 및 노심 열적여유도를 향상시킬 수 있다는 측면에서 바람직할 것으로 판단된다.

In this study, to examine the effect of a hole size change(smaller hole diameter) in the outer region of the lower-support-structure-bottom plate(LSSBP) on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.15. The predicted results were compared with those of the original LSSBP. Through these comparisons, it was concluded that a more uniform distribution of the mass flow rate at the core-inlet plane could be obtained by reducing the hole size in the outer region of the LSSBP. Therefore, from the nuclear regulatory perspective, design change of the hole pattern in the outer region of the LSSBP may be desirable in terms of improving both the mechanical integrity of the fuel assembly and the core thermal margin.

키워드

참고문헌

  1. Euh, D. J., Kim, K. H., Youn, J. H., Bae, J. H., Chu, I. C., Kim, J. T., Kang, H. S., Choi, H. S., Lee, S. T. and Kwon, T. S., 2012, "A Flow and Pressure Distribution of APR+ Reactor Under the 4-Pump Running Conditions with a Balanced Flow Rate," Nuclear Engineering and Technology, Vol. 44, pp. 735-744. https://doi.org/10.5516/NET.02.2012.715
  2. Kim, K. H., Euh, D. J., Chu, I. C., Youn, Y. J., Choi, H. S. and Kwon, T. S., 2013, "Experimental Study of the APR+ Reactor Core Flow and Pressure Distributions under 4-Pump Running Conditions," Nuclear Engineering and Design, Vol. 265, pp. 957-966. https://doi.org/10.1016/j.nucengdes.2013.07.021
  3. Kim, K. H., Euh, D. J., Choi, H. S. and Kwon, T. S., "Effect of the Design Change of the LSSBP on Core Flow Distribution of APR+ Reactor," Transactions of the Korean Nuclear Society Autumn Meeting, October 30-31, 2014, Pyeongchang, Republic of Korea.
  4. ANSYS CFX, Release 15.0, ANSYS Inc.
  5. ANSYS CFX-Solver Modeling Guide, 2013, ANSYS Inc.
  6. Menter, F., 2001, "CFD Best Practice Guidelines for CFD Code Validation for Reactor Safety Applications," ECORA CONTRACT $N^{\circ}$ FIKS-CT-2001-00154.
  7. Lee, G. H., Bang, Y. S., Woo, S. W. and Cheong, A. J., "Sensitivity Study on Turbulence Models for the Prediction of the Reactor Internal Flow," ICONE22-31255, Proceedings of the 22nd International Conference on Nuclear Engineering, July 7-11, 2014, Prague, Czech Republic.
  8. Lee, G. H. and Cheong, A. J., "Numerical Analysis for the Effect of Asymmetric Inlet Flow Rate on the Reactor Internal Flow Distribution," 14FETH05C12, Proceedings of the Proceedings of the KSME Fluid Engineering Division 2014 Spring Conference, May 15-16, 2014, Busan, Republic of Korea.
  9. Lee, G. H., Bang, Y. S., Woo, S. W. and Cheong, A. J., 2014, "Comparative Study on the Effect of Reactor Internal Structure Geometry Modeling Methods on the Prediction Accuracy for PWR Internal Flow Distribution," Annals of Nuclear Energy, Vol. 70, pp. 208-215. https://doi.org/10.1016/j.anucene.2014.03.020

피인용 문헌

  1. Numerical Analysis of Flow Distribution Inside a Fuel Assembly with Split-Type Mixing Vanes vol.40, pp.5, 2016, https://doi.org/10.3795/KSME-B.2016.40.5.329