• Title/Summary/Keyword: core temperature

Search Result 1,692, Processing Time 0.023 seconds

Thermal Analysis of 3D Multi-core Processors with Dynamic Frequency Scaling (동적 주파수 조절 기법을 적용한 3D 구조 멀티코어 프로세서의 온도 분석)

  • Zeng, Min;Park, Young-Jin;Lee, Byeong-Seok;Lee, Jeong-A;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.1-9
    • /
    • 2010
  • As the process technology scales down, an interconnection has became a major performance constraint for multi-core processors. Recently, in order to mitigate the performance bottleneck of the interconnection for multi-core processors, a 3D integration technique has drawn quite attention. The 3D integrated multi-core processor has advantage for reducing global wire length, resulting in a performance improvement. However, it causes serious thermal problems due to increased power density. For this reason, to design efficient 3D multi-core processors, thermal-aware design techniques should be considered. In this paper, we analyze the temperature on the 3D multi-core processors in function unit level through various experiments. We also present temperature characteristics by varying application features, cooling characteristics, and frequency levels on 3D multi-core processors. According to our experimental results, following two rules should be obeyed for thermal-aware 3D processor design. First, to optimize the thermal profile of cores, the core with higher cooling efficiency should be clocked at a higher frequency. Second, to lower the temperature of cores, a workload with higher thermal impact should be assigned to the core with higher cooling efficiency.

Applicability of the Krško nuclear power plant core Monte Carlo model for the determination of the neutron source term

  • Goricanec, Tanja;Stancar, Ziga;Kotnik, Domen;Snoj, Luka;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3528-3542
    • /
    • 2021
  • A detailed geometrical model of a Krško reactor core was developed using a Monte Carlo neutron transport code MCNP. The main goal of developing an MCNP core model is for it to be used in future research focused on ex-core calculations. A script called McCord was developed to generate MCNP input for an arbitrary fuel cycle configuration from the diffusion based core design package CORD-2, taking advantage of already available material and temperature data obtained in the nuclear core design process. The core model was used to calculate 3D power density profile inside the core. The applicability of the calculated power density distributions was tested by comparison to the CORD-2 calculations, which is regularly used for the nuclear core design calculation verification of the Krško core. For the hot zero power and hot full power states differences between MCNP and CORD-2 in the radial power density profile were <3%. When studying axial power density profiles the differences in axial offset were less than 2.3% for hot full power condition. To further confirm the applicability of the developed model, the measurements with in-core neutron detectors were compared to the calculations, where differences of 5% were observed.

ATWS Performance of KALIMER Uranium Metal Core

  • Dohee Hahn;Kim, Young C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.592-597
    • /
    • 1996
  • The KALIMER core, of which nuclear design is largely governed by inherent safety and reactivity control issues, is fueled with metallic fuel, and the initial core will be loaded with 20% enriched Uranium metal fuel. KALIMER safety design objectives include the accommodation of unprotected, ATWS events without operator action, and without the support of active shutdown, shutdown heat removal, or any automatic system without damage to the plant and without jeopardizing public safety. The transient analysis of the core designs has been focused on severe events to assess the margins in the design, and ATWS events are the most severe events that must be accommodated by the KALIMER design. The ATWS performance has been evaluated for the preliminary initial core design of KALIMER with a particular emphasis on the inherent negative reactivity feedback effects, including the Doppler, sodium density, fuel axial expansion, core radial expansion, and control rod driveline expansion. Results show that the Uranium metal core design meets the temperature limits with margin.

  • PDF

Evaluation of Microstructure and Mechanical Property of a Novel Ceramic Salt Core (세라믹 용융코어의 미세조직과 기계적 특성)

  • Lee, Jun-Ho;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.4
    • /
    • pp.166-169
    • /
    • 2008
  • This study deals about the development of fusible core with low melting temperature by addition of ceramic particles. A new concept of salt core was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The mechanical properties of fusible core were improved due to the addition of ceramic particles which helped to produce fine microstructure. The new technology for the preparation of new fusible core materials which possess high compression strength was established. Addition of ceramics particles increased the mechanical properties of fusible core materials. There was an increasing relationship between percentage of ceramic particles and mechanical strength was existed up to 60%.

Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles (Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구)

  • Lee, Kyoung-Goo;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.

The Characteristics of SMD Inductor Core (SMD Inductor Core의 전기적 특성)

  • Oh, Yong-Chul;Kim, Jin-Sa;Lee, Dong-Gyu;Shin, Chul-Ki;Kim, Ki-Joon;Lee, Chul-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.85-88
    • /
    • 2005
  • In this study, it analysis electric field of SMD(Surface Mounted Device) Inductor Core and it get electric field only exist inside of SMD core. Therefore electric fields do not affect any device and equipments. These results are very important to design data acquisition system(several test equipments such as temperature, impedance, and current test), because data acquisition system can place under the SND Inductor core. So, it can be decrease their test error due to electric field.

  • PDF

Analysis of Back EMF and Torque in Interior Permanent Magnet BLDC Motors (INTERIOR 영구자석 BLDC MOTOR의 역기전압과 토오크에 관한 분석)

  • Sung, Bu-Hyun;Ku, Ja-Nam;Kim, Chang-Jun;Lee, Jin-Won;Kim, Sung-Min;Bae, Gun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.877-879
    • /
    • 1995
  • In this study, we developed the efficient brushless DC motor for a compressor of air conditioner. The characteristics of motor are under the control of the material of some parts and the shape of magnet. Especially we compared the interior shape to the surface shape of the magnet. And we optimized the parameters like the temperature and the materials of magnet and core by tool for more efficient motor.

  • PDF

A Development of Nontoxic Composite Latex Using $CaCO_3$/PEMA ($CaCO_3$/Poly ethyl methacrylate를 이용한 무독성 혼합라텍스의 개발)

  • Seul, Soo-Duk;Lee, Sun Ryong;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.133-139
    • /
    • 2002
  • Core-shell polymers of inorganic/organic pair, which are consisted of both core and shell component, were synthesized by sequential emulsion polymerization using ethyl methacrylate (EMA) as a shell monomer and ammonium persulfate as initiator. We found that $CaCO_3$ core should be prepared by adding 2.0wt% SDBS(sodium dodecyl benzene sulfonate), $CaCO_3$ core/PEMA shell polymerization was carried out on the surface of $CaCO_3$ particle during EMA shell polymerization in the core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring the degree on decomposition of $CaCO_3$ by HCI solution, thermal decomposition of polymer composite on thermogravimetric analyzer, glass transition temperature on differential scanning calorimeter, and morphology using scanning electron microscope.

Changes in Body Temperature of Piglets in a Day (자돈의 일중 체온변화에 관한 연구)

  • Yi, One-Hyeon;Jeong, Wang-Yong;Lee, Sang-Cheol;Lee, Sang-Rak
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.91-94
    • /
    • 2012
  • This study was conducted to develop an algorithm for determination of abnormal body temperature in piglets through skin and core temperature database at normal condition. 5 piglets (mean BW : 46 kg) were employed for the experiment. They were adapted in the individual metabolism cage set at $22.5{\pm}2.0^{\circ}C$ of room temperature for 2 weeks before the measurement of body temperature. Ear, neck, head and subcutaneous neck temperature (as core temperature) of piglets were measured for every 1 minute during 30 consecutive days through 1mm k-type thermocouple wire and NI-devices (National Instruments Corporation, Austin, Texas, USA). Body temperature data were accumulated and integrated into the 1 day unit. Change of daily mean skin and core body temperatures in piglets were lowest at around 06:00, highest at around 14:00 and gradually decreased until the day after 06:00. Each skin temperatures were varied with the measuring site and largely depended on the room temperature changes. Established database of skin and core body temperature in piglets through this study can be applied to develop an algorithm for monitoring and determining the abnormal condition of animal by using radio frequency identification.

Developing a Multi-Functional Smart Down Jacket Utilizing Solar Light and Evaluating the Thermal Properties of the Prototype (태양광을 활용한 스마트 다운재킷 개발 및 보온성능 평가)

  • Yi, Kyonghwa;Kim, Keumwha
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.92-108
    • /
    • 2015
  • This study aimed at developing a down jacket prototype that utilized sunlight as an alternative energy source with no air pollution. The jacket is filled with flexible solar panels and has a heat-generating function and LED function. In this study, three smart down jacket prototypes were developed, and the jacket's capabilities were demonstrated through the thermal effect on the performance test. The typical output voltage of the flexible solar panels was 6.4V. By connecting the 2 solar cell modules in series, the final output voltage was 12.8V. A battery charge regulator module was used the KA 7809 (TO-220) of 9V. Three heating pads were to be inserted into the belly of the jacket as direct thermal heating elements, and the LED module was configured, separated by a flash and an indicator. The smart down jacket was designed to prevent damage to the down pack without the individual devices' interfering with the human body's motion. Because this study provides insulation from extreme cold with a purpose, the jacket was tested for heat insulation properties of non-heating, heating on the back, heating on the abdomen, and heating on both the back and abdomen in a sitting posture in a static state. Thermal property analysis results from examining the average skin temperature, core temperature, and the temperature and humidity within clothing showed, that placing a heating element in one place was more effective than distributing the heating elements in different locations. Heating on the back was the most effective for maintaining optimal skin temperature, core temperature, and humidity, whereas heating on the abdomen was not effective for maintaining optimal skin temperature, core temperature, or humidity within clothing because of the gap between the jacket and the body.