• Title/Summary/Keyword: core strength

Search Result 1,277, Processing Time 0.047 seconds

Analysis of Joining Strength in Electromagnetic Joining of Metals to High Toughness Polymers (금속과 고분자 재료의 접합강도 해석)

  • Son, Hui-Sik;Kim, Nam-Hwan;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.110-116
    • /
    • 1992
  • Electromgnetic joining of aluminum alloy tubes to high toughness polyurethane rubber cores is studied in order to estimate the joining strength and to analyze the effect of the process variables. The equation which can estimate the joining strength is proposed under considering the elastic recovery of the polyurethane core and the radial shrinkage of the core by pulling it axially. The obtained results are as follows : 1) The joining strength is mainly dependent on the magnitude of residual elastic strain of the polyurethane core. 2) The radial shrinkage (residual strain reduction) of the core during the axial pulling causes the joining strength to decrease severely. The equation for the reduced axial strength is proposed and it is found that the estimated values agree well with experimental results. 3) The magnitude of radial shrinkage could be reduced for the smaller value of ratio l/r. 4) The joining strength in metal/polymer joining increases as the friction coefficient increases. But its effect of friction coefficient is insignificant in comparison with the case of metal/metal joining.

  • PDF

A STUDY FOR THE BONDING STRENGTH OF COMPOSITE RESIN CORE TO GLASS FIBER POST (Glass Fiber Post와 Composite Resin Core의 전단결합강도)

  • Kim Tae-Hyoung;Shim June-Sung;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.415-425
    • /
    • 2005
  • Statement of problem : Fracture of composite resin core will be occulted by progress of crack. Bonding interface of different materials has large possibility of starting point of crack line. Therefore, the bond strength of glass fiber post to composite resin core is important for prevention of fracture. Purpose: This in vitro study tried to find out how to get the higher strength of glass fiber post to composite resin core through surveying the maximum load that fractures the post and cote complex. Materials and methods: 40 specimens made with glass fiber Posts(Style $post^{(R)}$, Metalor, Swiss) and composite resin core ($Z-100^{(R)}$, 3M, USA) were prepared and loaded to failure with push-out type shear-bond strength test in a universal test machine. The maximum fracture load and fracture mode were investigated in the specimens that were restored with four different surface treatments. With the data. ANOVA test was used to validate the significance between the test groups, and Bonferroni method was used to check if there is any significant statistical difference between each test group. Evely analysis was approved with 95% reliance. Results: On measuring the maximum fracture load of specimens, both the treatments of sandblasted and acid-etched one statistically showed the strength increase rather than the control group (p<0.005). The scanning electric microscope revealed that sand blasting made more micro-retention form not only on the resin matrix but on the glass fiber, and acid-etching contributed to increase in surface retention form, eliminated the inorganic particles in resin matrix. Specimen fracture modes investigation represented that sand blasted groups showed lower bonding failure than no-sand blasted groups. Conclusion: Referring to the values of maximum fracture load of specimens, the bonding strength was increased by sand blasting and acid-etching.

An Empirical Approach for Improving the Estimation of the Concrete Compressive Strength Considered the Effect of Age and Drilled Core Sample (재령과 코어의 영향을 고려한 향상된 콘크리트 압축강도 추정기법의 경험적 제안)

  • Oh, Hongseob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.103-111
    • /
    • 2015
  • To evaluate the compressive strength of concrete, rebound test and ultra pulse velocity methods as well as core test were widely used. The predicted strength effected by age, maturity and degradation of concrete, is a slight difference between in-situ concrete strength. The compressive strength of standard cylinder specimens and core samples by obtained from drilling will have a difference since the concrete is disturbed during the drilling by machinery. And the rebound number and ultra pulse velocity are also changed according to the age and maturity of concrete that effected to the surface hardness and microscpic minuteness. The authors performed the experimental work to reflect the age and core effect to the results from NDE test. The test results considering on the core and age of concrete were compaired with the proposed equation to predict the compressive strength.

Development of Ternary Inorganic Binder System for Manufacturing High-Functional Ceramic Molds and Core (고기능성 세라믹 주형 및 중자 제작을 위한 3원계 무기 바인더 시스템 개발)

  • Hye-Yeong Park;Geun-Ho Cho;Hyun-Hee Choi;Bong Gu Kim;Eun-Hee Kim;SeungCheol Yang;Yeon-Gil Jung
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.538-544
    • /
    • 2022
  • In existing ceramic mold manufacturing processes, inorganic binder systems (Si-Na, two-component system) are applied to ensure the effective firing strength of the ceramic mold and core. These inorganic binder systems makes it possible to manufacture a ceramic mold and core with high dimensional stability and effective strength. However, as in general sand casting processes, when molten metal is injected at room temperature, there is a limit to the production of thin or complex castings due to reduced fluidity caused by the rapid cooling of the molten metal. In addition, because sodium silicate generated through the vitrification reaction of the inorganic binder is converted into a liquid phase at a temperature of 1,000 ℃. or higher, it is somewhat difficult to manufacture parts through high-temperature casting. Therefore, in this study, a high-strength ceramic mold and core test piece with effective strength at high temperature was produced by applying a Si-Na-Ti three-component inorganic binder. The starting particles were coated with binary and ternary inorganic binders and mixed with an organic binder to prepare a molded body, and then heat-treated at 1,000/1,350/1,500 ℃ to prepare a fired body. In the sample where the two-component inorganic binder was applied, the glass was liquefied at a temperature of 1,000 ℃ or higher, and the strength decreased. However, the firing strength of the ceramic mold sample containing the three-component inorganic binder was improved, and it was confirmed that it was possible to manufacture a ceramic mold and core via high temperature casting.

The effects of consolidation time on the strength and failure behavior of freshwater ice rubble

  • Shayanfar, Hamid;Bailey, Eleanor;Pritchett, Robert;Taylor, Rocky
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • Medium-scale tests were conducted to measure and observe the strength and failure behavior of freshwater ice rubble. A custom box measuring $3.05m{\times}0.94m{\times}0.94m$, with Plexiglas walls was built so that failure mechanisms could be observed. Ice rubble beams of nominal thickness 50 cm were produced by placing randomly sized ice pieces into the box filled with water at its freezing temperature. After the specified consolidation time, ranging between 0.2 and 70.5 h, the ice rubble beam was deformed by pushing a platen vertically downwards though the center of the beam until failure. For consolidation times less than 4 h, the ice beam failed progressively and tended to fail by shearing on macroscopic scale. At times greater than 4 h the beam failed by bending. The change in failure behaviour has been attributed to the degree of bonding between ice blocks.

Influence of modification in core building procedure on fracture strength and failure patterns of premolars restored with fiber post and composite core

  • Kim, Young-Hoi;Lee, Jong-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • PURPOSE. The influence of the modified process in the fiber-reinforced post and resin core foundation treatment on the fracture resistance and failure pattern of premolar was tested in this study. MATERIALS AND METHODS. Thirty-six human mandibular premolars were divided into 4 groups (n = 9). In group DCT, the quartz fibre post (D.T. Light-post) was cemented with resin cement (DUO-LINK) and a core foundation was formed with composite resin (LIGHT-CORE). In group DMO and DMT, resin cement (DUO-LINK) was used for post (D.T. Lightpost) cementation and core foundation; in group DMO, these procedures were performed simultaneously in one step, while DMT group was accomplished in separated two steps. In group LCT, the glass fiber post (LuxaPost) cementation and core foundation was accomplished with composite resin (LuxaCore-Dual) in separated procedures. Tooth were prepared with 2 mm ferrule and restored with nickel-chromium crowns. A static loading test was carried out and loads were applied to the buccal surface of the buccal cusp at a 45 degree inclination to the long axis of the tooth until failure occurred. The data were analyzed with MANOVA (${\alpha}$= .05). The failure pattern was observed and classified as either favorable (allowing repair) or unfavorable (not allowing repair). RESULTS. The mean fracture strength was highest in group DCT followed in descending order by groups DMO, DMT, and LCT. However, there were no significant differences in fracture strength between the groups. A higher prevalence of favorable fractures was detected in group DMT but there were no significant differences between the groups. CONCLUSION. The change of post or core foundation method does not appear to influence the fracture strength and failure patterns.

The Practical Application of High Strength Concrete to Major Structural Elements in consideration of Heat of Hydration (고강도 콘크리트의 주요구조부재에 대한 현장타설 및 수화온도 측정)

  • 윤영수;이승훈;성상래;백승준;신성우;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.195-200
    • /
    • 1995
  • This paper presents the practical use of high strength concrete on 28-story Samsung Shin-dacbang Housing-Commercial Combined Building with 8-story basements located in Seoul. 700 Kg/$\textrm{cm}^2$ compressive Strength concrete was placed for basement core-walls and 500 kg/$\textrm{cm}^2$ concrete was used for structural frames up to 10th floor. The thermal sensors were installed prior to concrete casting into the core walls to measure the heat of hydration during hardening process. The correlation of core strength to the standard cylinder test strength was also discussed. The successful utilization of 500 and 700 kg/$\textrm{cm}^2$ concrete shows that the practical application of high strength concrete has a great potential to the high-rise R.C building construction.

  • PDF

Polymerization and Effect of Organic/Organic Core Shell Binder (Organic/organic Core Shell 바인더의 중합과 처리영향)

  • Sim, Dong-Hyun;Ban, Ji-Eun;Kim, Min-Sung;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.470-477
    • /
    • 2008
  • Core shell binder of organic/organic pair that has two different properties within a particle were prepared by a step emulsion polymerization of methacrylate (MMA), styrene (St), ethyl acrylate (EA), butyl acrylate (BA), and 2-HEMA by using an water soluble initiator(APS) in the presence of an anionic surfactant (SDBS). Unwoven tensile strength of the core shell binder after processing and measuring the PSt/PMMA/2-HEM core shell with the binder is a value represents the highest was $10.75\;kg_f$/2.5cm, elongation measurements PEA/PBA core shell binder showed the highest value was 120.00%. In conclusion, using the core shell binders were able to control the mechanical properties such as tensile strength and elongation.

Effects of Sling-Based Core Exercise Program on Cobb Angle and Core Strength of Idiopathic Scoliosis in Adolescences (슬링을 통한 코어운동프로그램이 청소년의 특발성 척추측만증의 Cobb각과 코어근력에 미치는 효과)

  • Yu, Dang-young;Yang, Young-sik;Park, Sung-doo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.47-56
    • /
    • 2019
  • Background: The purpose of this study was compare and analyze the Cobb's angle, core muscle strengthening in adolescents with idiopathic scoliosis and provide scientific basis for effectively treating idiopathic scoliosis in the future. Methods: The subjects of this study were 20 members of adolescent girls. Measurement tools were comprised Cobb's angle test, core muscle strengthening test. After 8 weeks of program, both groups had the same measurements as before program start. Results: The results of the study are as follows. First, the experimental group was decreased statistically significantly in Cobb's angle than the control group. Second, Both groups were increased statistically significantly in core muscle strengthening. The experimental group was increased statistically significantly direction in front, back l than the control group. Conclusion: Sling exercise with core exercise was effective in the decrease of Cobb's angle and core muscle strength than general scoliosis exercise in adolescents with idiopathic scoliosis.

Development of the Copper Core Balls Electroplated with the Solder of Sn-Ag-Cu

  • Imae, Shinya;Sugitani, Yuji;Nishida, Motonori;kajita, Osamu;Takeuchi, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1207-1208
    • /
    • 2006
  • We developed the copper core ball electroplated with Sn-Ag-Cu of the eutectic composition which used mostly as Pb free solder ball with high reliability. In order to search for the practicality of this developed copper core ball, the evaluation was executed by measuring the initial joint strength of the sample mounted on the substrate and reflowed and by measuring the joint strength of the sample after the high temperature leaving test and the constant temperature and the humidity leaving test. This evaluation was compered with those of the usual other copper core balls electroplated with (Sn,Sn-Ag,Sn-Cu,Sn-Bi) and the Sn-Ag-Cu solder ball.

  • PDF