• Title/Summary/Keyword: copper particles

Search Result 261, Processing Time 0.028 seconds

Fabrication and characterization of Copper/Silicon Nitride composites

  • Ahmed, Mahmoud A.;Daoush, Walid M.;El-Nikhaily, Ahmed E.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.131-140
    • /
    • 2016
  • Copper/silicon nitride ($Cu/Si_3N_4$) composites are fabricated by powder technology process. Copper is used as metal matrix and very fine $Si_3N_4$ particles (less than 1 micron) as reinforcement material. The investigated powder were used to prepare homogenous ($Cu/Si_3N_4$) composite mixtures with different $Si_3N_4$ weight percentage (2, 4, 6, 8 and10). The produced mixtures were cold pressed and sintered at different temperatures (850, 950, 1000, $1050^{\circ}C$). The microstructure and the chemical composition of the produced $Cu/Si_3N_4$ composites were investigated by (SEM) and XRD. It was observed that the $Si_3N_4$ particles were homogeneously distributed in the Cu matrix. The density, electrical conductivity and coefficient of thermal expansion of the produced $Cu/Si_3N_4$ composites were measured. The relative green density, sintered density, electrical conductivity as well as coefficient of thermal expansion were decreased by increasing the reinforcement phase ($Si_3N_4$) content in the copper matrix. It is also founded that the sintered density and electrical conductivity of the $Cu/Si_3N_4$ composites were increased by increase the sintering temperature.

Evolutional Transformations of Copper Nanoparticles to Copper Oxide Nanowires

  • Gang, Min-Gyu;Yun, Ho-Gyu;Kim, Yeong-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.18.2-18.2
    • /
    • 2011
  • We study and analyze here a novel and simple approach to produce copper oxide nanowires in a methanol as an alternative to chemical synthesis routs and VLS-growth method. First, copper oxide nanowires are grown from copper nanoparticles in methanol at $60^{\circ}C$. Nanoparticles are synthesized via inert gas condensation, one of the dry processes. Synthesized nanowires were confirmed via XRD, FESEM and TEM. As a result, all particles have grown to Cu2O nanowires (20~30 nm in diameter, 5~10 um in length; aspect ratio >160~500). Next, these synthesized oxide nanowires are reduced copper nanowires in the furnace under hydrogen flow at $200{\sim}450^{\circ}C$. The evolution of oxide nanowires and their transformation to copper nanowires is studied as a function of time.

  • PDF

The Effect of Lubricant Containing Copper Alloy Fine Particles on a Marine Diesel Engine (극미세 구리합금입자(NICO)를 이용한 특수윤활유가 박용기관 성능에 미치는 영향)

  • 소병두;임희성;박권하
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.61-67
    • /
    • 2000
  • Many research works for improving a boundary lubrication performance have been executed by using solid lubricants, and been tried to apply an engine lubrication. However those general lubricants like MoS$_2$ or PTFE have not been applied on engines due to the extreme conditions such as very high temperature and pressure by combustion process in a cylinder. A copper nickel alloy fine particle has been introduced and studied. In this Paper the lubricant using the alloy Particles is applied on a marine diesel engine and assessed by the engine performance test The results showed the increase of cylinder pressure related strongly to the engine efficiency as well as the improving the engine lubrication performance.

  • PDF

Metal Nano Particle modified Nitrogen Doped Amorphous Hydrogenated Diamond-Like Carbon Film for Glucose Sensing

  • Zeng, Aiping;Jin, Chunyan;Cho, Sang-Jin;Seo, Hyun-Ook;Lim, Dong-Chan;Kim, Doo-Hwan;Hong, Byung-You;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.434-434
    • /
    • 2011
  • Electrochemical method have been employed in this work to modify the chemical vapour deposited nitrogen doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel and copper nano particle modified N-DLC electrodes. The electrochemical behaviour of the metal nano particle modified N-DLC electrodes have been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano particles on the N-DLC surface have been investigated using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The nickel nano particle modified N-DLC electrode exhibits a high catalytic activity and low background current, while the advantage of copper modified N-DLC electrode is drawn back by copper oxidizations at anodic potentials. The results show that metal nano particle modification of N-DLC surface could be a promising method for controlling the electrochemical properties of N-DLC electrodes.

  • PDF

The effects of applied voltage on copper powder manufactured by electric explosion (전기폭발방식을 이용한 동(Cu) 미분 제조 및 인가전압의 영향)

  • Lee, Hoo-In;Kim, Won-Baek;Suh, Chang-Youl;Sohn, Jeong-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.474-475
    • /
    • 2007
  • Wire electrical explosion(WEE) has been used for the production of fine metal particles. In WEE, electrical powder was stored and compressed into capacitor and released to produce fine particles through evaporation and condensation. In this study, the effect of applied voltage on the size of copper powders was investigated. High tension was added up to the explosion device by dividing 4 steps. At voltages lower than 5.2 kV, the fraction of powders finer than $44{\mu}m$ was almost negligible. The effectiveness of explosion increased sharply with increased voltage over 5.8 kV. At the highest voltage of 6.4 kV, more than 80% of explosion products were finer than $44{\mu}m$.

  • PDF

Composite copper powder from Kelex 100 (Kelex100로부터 구리입자 분말 합성)

  • ;P.R Taylor
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.131-137
    • /
    • 1998
  • A composite copper coated powder was generated by pressure hydrogen stripping copper from Kelex 100 solvent extractant in the presence of silica powder. Within the limitation of solvent extraction under constant conditions, both loading level and stripping rate were reproducible. The stripping copper kinetics are reduced from a divalent state to a metallic state and then deposited on the surface of the silica powder. Copper nucleates heterogeneously on the seed particles. They are giving an agglomerated and non - uniform powder.

  • PDF

The Effect of Solution Agitation on the Electroless Cu Deposition Within Nano-patterns (용액 교반이 미세 패턴 내 무전해 구리 도금에 미치는 영향)

  • Lee, Joo-Yul;Kim, Man;Kim, Deok-Jin
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • The effect of solution agitation on the copper electroless deposition process of ULSI (ultra large scale integration) interconnections was investigated by using physical, electrochemical and electrical techniques. It was found that proper solution agitation was effective to obtain superconformal copper configuration within the trenches of $130{\sim}80nm$ width. The transition of open potential during electroless deposition process showed that solution agitation induced compact structure of copper deposits by suppressing mass transfer of cuprous ions toward substrate. Also, the specific resistivity of copper layers was lowered by increasing agitation speed, which made the deposited copper particles smaller. Considering both copper deposit configuration and electric property, around 500 rpm of solution agitation was the most suitable for the homogeneous electroless copper filling within the ultra-fine patterns.

Numerical Predictions of Heat Transfer in the Fluidized Bed Heat Exchanger

  • Ahn, Soo-Whan
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.29-43
    • /
    • 2010
  • The numerical analysis by using CFX 11.0 commercial code was done for proper design of the heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass ($3mm{\Phi}$), aluminum ($2{\sim}3mm{\Phi}$), steel ($2{\sim}2.5mm{\Phi}$), copper ($2.5mm{\Phi}$) and sand ($2{\sim}4mm{\Phi}$) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behavior might be attributed to the parameters such as surface roughness or particle heat capacity.

Copper Oxide-Modified Polymeric Composite Elecrodes for Amperometric Detection of Carbohydrates in LCEC Analysis

  • 정혜경;박종만
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.952-957
    • /
    • 1997
  • Modified polymeric composite electrodes having highly dispersed CuO particles through the electrode matrix were prepared for LCEC or flow injection analysis of carbohydrates. The composite electrodes were prepared by incorporating carbon black and highly dispersed copper oxide particles in polystyrene matrix cross-linked with divinylbenzene. The analytical characteristics of the electrodes for LCEC and flow injection analysis of carbohydrates were evaluated. Improved performance in LCEC and flow injection analysis of carbohydrates is demonstrated in terms of sensitivity, reproducibility, stability and surface renewability. It was possible to get improved performance of the electrodes as well as adaptability of the electrodes for practical applications by employing highly dispersed catalyst particles through the electrode matrix and robust polymeric electrode matrix.

Optimization of Removal Rates with Guaranteed Dispersion Stability in Copper CMP Slurry

  • Kim Tae-Gun;Kim Nam-Hoon;Kim Sang-Yong;Chang Eui-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.233-236
    • /
    • 2004
  • Copper metallization has been used in high-speed logic ULSI devices instead of the conventional aluminum alloy metallization. One of the key issues in copper CMP is the development of slurries that can provide high removal rates. In this study, the effects of slurry chemicals and pH for slurry dispersion stability on Cu CMP process characteristics have been performed. The experiments of copper slurries containing each different alumina and colloidal silica particles were evaluated for their selectivity of copper to TaN and $SiO_{2}$ films. Furthermore, the stability of copper slurries and pH are important parameters in many industries due to problems that can arise as a result of particle settling. So, it was also observed about several variables with various pH.