• 제목/요약/키워드: cooperating robots

검색결과 39건 처리시간 0.033초

Motion Analysis of Objects Carried by Multiple Cooperating Manipulators with Frictional Contacts

  • Lee, Ji-Hong;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1424-1429
    • /
    • 2004
  • In this paper a mathematical framework for deriving acceleration bounds from given joint torque limits of multiple cooperating robots are described. Especially when the different frictional contacts for every contact are assumed and the torque limits are given in 2-norm sense, we show that the resultant geometrical configuration for the acceleration is composed of corresponding parts of ellipsoids. Since the frictional forces at the contacts are proportional to the normal squeezing forces, the key points of the work includes how to determine internal forces exerted by each robot in order not to cause slip at the contacts while the object is carried by external forces. A set of examples composed of two robot systems are shown with point-contact-with-friction model and insufficient or proper degree of freedom robots.

  • PDF

Optimal Load Distribution of Transport ing System for Large Flat Panel Displays

  • Kim Jong Won;Jo Jang Gun;Cho Hyun Chan;Kim Doo Yong
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.110-123
    • /
    • 2005
  • This paper proposes an intelligent method for the optimal load distribution of two cooperating robots(TCRs) using fuzzy logic. The proposed scheme requires the knowledge of the robots' dynamics, which in turn depend upon the characteristics of large flat panel displays(LFPDs) carried by the TCRs. However, the dynamic properties of the LFPD are not known exactly, so that the dynamics of the robots, and hence the required joint torque, must be calculated for nominal set of the LFPD characteristics. The force of the TCRs is an important factor in carrying the LFPD. It is divided into external force and internal force. In general , the effects of the internal force of the TCRs are not considered in performing the load distribution in terms of optimal time, but they are essential in optimal trajectory planning: if they are not taken into consideration, the optimal scheme is no longer fitting. To alleviate this deficiency, we present an algorithm for finding the internal-force factors for the TCRs in terms of optimal time. The effectiveness of the proposed system is demonstrated by computer simulations using two three-joint planner robot manipulators.

  • PDF

축소 차원 형상 공간을 이용한 협조작업 두 팔 로봇의 충돌 회피 경로 계획 (Collision-free path planning for two cooperating robot manipulators using reduced dimensional configuration space)

  • 최승문;이석원;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.904-907
    • /
    • 1996
  • In this paper, we propose an efficient collision-free path planning method of two cooperating robot manipulators grasping a common object rigidly. For given two robots and an object, the procedure is described which constructs the reduced dimensional configuration space by the kinematic analysis of two cooperating robot manipulators. A path planning algorithm without explicit representation of configuration obstacles is also described. The primary steps of the algorithm is as follows. First, we compute a graph which represents the skeleton of the free configuration space. Second, a connection between an initial and a goal configuration to the graph is searched to find a collision-free path.

  • PDF

Exerted force minimization for weak points in cooperating multiple robot arms

  • Shin, Young-Dal;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1167-1172
    • /
    • 1990
  • This paper discusses a force distribution scheme which minimizes the weighted norm of the forces/torques applied on weak points of cooperating multiple robot arms. The scheme is proposed to avoid the damage or unwanted motion of any weak point of robots or object stemming from excessive forces/torques. Since the proposed scheme can be used for either the joint torque minimization or the exerted force minimization on the object, it can be regarded as a unified force minimization method for multiple robot arms. The computational complexity in this scheme is analyzed using the properties of Jarcobian. Simulation of two identical PUMA robots held an object is carried out to illustrate the proposed scheme. By the proper choice of the weighting matrix in the performance index, we show that force minimization for a weak point can be achieved, and that the exerted force minimization on the object can be changed to the joint torque minimization.

  • PDF

A computed-error-input based learning scheme for multi-robot systems

  • Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.518-521
    • /
    • 1995
  • In this paper, a learning control problem is formulated for cooperating multiple-robot manipulators with uncertain system parameters. The commonly held object is also assumed to be unknown and the multiple-robots themselfs experience uncertain operating conditions such as link parameters, viscous friction parameters, suctions, actuator bias, and etc. Under these conditions, the learning controllers designed for learning of uncertain parameters and robot control inputs for multiple-robot systems are shown to drive the multiple-robot manipulators to follow the desired Cartesian trajectory with the desired internal forces to the unknown object.

  • PDF

멀티 쓰레딩 방식을 이용한 군집 로봇의 중앙 제어 시스템 구현 (Implementation of the Centralized Control System for Swarm Robots using Multi-Threading method)

  • 전봉기
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.349-354
    • /
    • 2014
  • 이 논문에서는 여러 대의 로봇들이 협력하여 미로를 탈출하는 방법을 제안한다. 논문에서 사용된 교육용 로봇들은 ZigBee로 서로 통신할 수 있으나, 로봇들의 연산기능이 낮아 서로 협력하여 문제를 해결할 수 없다. 로봇의 모션제어로 통로를 직립 보행하도록 하였으며, 절대거리 센서를 이용하여 교차로와 막다른 골목을 인식하면 중앙제어 시스템에 전송하여 명령을 받는다. 여러 로봇들이 동시에 미로에 들어가서 효과적으로 미로를 탐색하도록 하는 미로 탐색 알고리즘을 수정하였다.

Finding the Maximally Inscribed Rectangle in a Robots Workspace

  • Park, Frank-Chongwoo;Jonghyun Baek;Inrascu, Cornel-Constantin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1119-1131
    • /
    • 2001
  • In this paper we formulate an optimization based approach to determining the maximally inscribed rectangle in a robots workspace. The size and location of the maximally inscribed rectangle is an effective index for evaluating the size and quality of a robots workspace. Such information is useful for, e. g., optimal worktable placement, and the placement of cooperating robots. For general robot workspaces we show how the problem can be formulated as a constrained nonlinear optimization problem possessing a special structure, to which standard numerical algorithms can be applied. Key to the rapid convergence of these algorithms is the choice of a starting point; in this paper we develop an efficient computational geometric algorithm for rapidly obtaining an approximate solution suitable as an initial starting point. We also develop an improved version of the algorithm of Haug et al. for calculating a robots workspace boundary.

  • PDF

초경량 양팔로봇의 개발 (Development of cooperating robot arms with ultra light weight)

  • 최형식;문웅주;김병국;임근화
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.67-68
    • /
    • 2006
  • In this paper, a new revolute cooperating robot arms with 12 d.o.f was developed for autonomous moving robots. The robot ann was designed to have the load capacity of 10 Kg. For this, a new joint actuator based on the fourbar link mechanism was employed. As a control system for the robot arm, a distributed control system was developed composed of the main controller and five motor controller for the ann joints. The main controller and the motor controller were developed using the ARM microprocessor and the TMS320c2407 processor, respectively. To validate the performance of the robot system, an experiment to support 10 Kg payload was performed.

  • PDF

Multi-robot control using Petri-net

  • Park, Se-Woong;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.59.5-59
    • /
    • 2001
  • Multi-agent robot system is the system which executes by cooperating with each robots and controlling several robots. Capability and function of each robot must be considered for cooperation behavior. Furthermore, it is necessary to analyze the given environment and to replace complex task with some simple tasks. Analysis of the given environment and role assignment for the given tasks are composed of discret event. In this paper, the hierarchical controller for multi-agent robot system using the petri-net state diagram is proposed. The proposed modeling method is implemented for soccer robot system. The effectiveness of proposed modeling method is shown through experiment.

  • PDF

영 공간 분해 방법을 이용한 다중 협동로봇의 모빌리티와 가속도 조작성 해석 (Analysis of Acceleration Bounds and Mobility for Multiple Robot Systems Based on Null Space Analysis Method)

  • 이필엽;전봉환;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.497-504
    • /
    • 2006
  • This paper presents a new technique that derives the dynamic acceleration bounds of multiple cooperating robot systems from given individual torque limits of robots. A set of linear algebraic homogeneous equation is derived from the dynamic equations of multiple robots with friction contacts. The mobility of the robot system is analyzed by the decomposition of the null space of the linear algebraic equation. The acceleration bounds of multiple robot systems are obtained from the joint torque constraints of robots by the medium of the decomposed null space. As the joint constraints of the robots are given in the infinite norm sense, the resultant acceleration bounds of the systems are described as polytopes. Several case studies are presented to validate the proposed method in this paper.