• Title/Summary/Keyword: cooler

Search Result 693, Processing Time 0.025 seconds

A Convergent Investigation on the thermal and stress analyses of CPU Cooler (CPU 쿨러의 열 및 응력 해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.153-158
    • /
    • 2020
  • In this study, the thermal and stress analyses were performed by applying a temperature condition of 100℃ at CPU cooler model. The value of heat flux value is shown to be the most at the lower rod area. The upper part becomes, the smaller the heat flow rate. The highest temperature is shown at the bottom of the CPU cooler model. Overall, the upper part becomes, the smaller the temperature becomes. Based on the temperature analysis, the thermal deformation caused by expansion, the deformation becomes smaller as the upper part of the overlapping plates. The great deformation happens at the bent area of the small rod as the lower part of model and the least deformation is shown at the lowest floor of model. In addition, the maximum thermal stress of 570.63 MPa happens at the floor below model. The stress is shown to decrease as the upper part of the overlapping plates becomes. But the stress is shown to increase somewhat at the middle part of model. By applying the study result on the thermal and stress analyses of CPU cooler, this study is seen to be suitable for the aesthetic convergence.

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

Optimization of Drying and Storage System for Paddy Using the Grain Cooler (곡물냉각기를 이용한 벼 건조 및 저장시스템의 최적화)

  • 김동철;김의웅
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.269-275
    • /
    • 2004
  • This study was conducted to develop an optimization model using Box's Complex Algorithm, and to determine optimum operating conditions to minimize costs for the drying and storage system using the grain cooler. To minimize the system operation cost, the optimum moisture contents after the first drying were found to be from 17.2 to 19.8 %. And optimum drying and cooling capacities were obtained. The combination of the dryer and grain cooler was found to be economical, showing enhancement of the drying capacity over 50%, and decrease of drying cost over 10%. When the circulating grain dryers of 6 and 20 ton/batch were used in conjunction with the grain cooler, the cost required for drying and storage system for paddy were 28,464∼33,317won/ton and 20,588∼26,511 won/ton, respectively, which was from 2.6 to 27.3% lower than that of conventional drying and storage system.

Design and Performance Evaluation of Dimpled EGR Cooler (딤플형 EGR 냉각기의 설계 및 성능평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2010
  • A conventional EGR cooler, which is used in an EGR system of an automobile diesel engine, has a low heat-exchange efficiency. To maximize the heat transfer between the exhaust gas and coolant, dimples are formed on the surface of heat exchange tubes. When designing the dimpled EGR cooler, the net heat transfer areas in the conventional and dimpled tube-type EGR coolers are compared. Structural integrity evaluations are also performed by combining finite element analysis with a homogenization method. Subsequently, the process of manufacturing the dimpled tube, i.e., the formation of dimples, edge bending, center v-notch bending, compression, and plasma welding, is established and carried out. Thus, the dimpled EGR cooler is developed, and its performance is verified.

An Experimental Study on the Performance of a Cross-Flow-Type, Indirect Evaporative Cooler Made of Paper/Plastic Film (종이와 플라스틱 필름의 이종 재질로 구성된 직교류형 간접증발소자의 성능에 대한 실험적 연구)

  • Kwon, Mi-Hye;Go, Min-Geon;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.475-483
    • /
    • 2015
  • In Korea, a typically hot and humid summer means that air-conditioners consume a large quantity of electricity; accordingly, the simultaneous usage of an indirect evaporative cooler may reduce the sensible-heat level and save the amount of electricity that is consumed. In this study, the heat-transfer and pressure-drop characteristics of an indirect evaporative cooler made of paper/plastic film were investigated under both dry and wet conditions; for the purpose of comparison, an indirect evaporative cooler made of plastic film was also tested. Our results show that the indirect evaporative efficiencies under a wet condition are greater than those under a dry condition, and the efficiencies of the paper/plastic sample (109% to 138%) are greater than those (67% to 89%) of the plastic sample; in addition, the wet-surface, indirect evaporative efficiencies of the paper/plastic sample are 32% to 36% greater than those of the plastic sample. Further, the wet-surface pressure drops of the paper/plastic sample are 13% to 23% larger than those of the plastic sample, and this might have been caused by the surface roughness of the samples. A rigorous heat-transfer analysis revealed that, for the plastic sample, 30% to 37% of the wet channels remained dry, whereas all of the channels were wet for the paper/plastic sample.

Cooling Heat Transfer Characteristics of $CO_2$ on Tube Geometry of Inclined Helical Coil Type Gas Coolers (경사진 헬리컬 코일형 가스냉각기의 관형상에 따른 $CO_2$ 냉각 열전달 특성)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.640-646
    • /
    • 2007
  • The cooling heat transfer coefficient of $CO_2$ (R-744) for tube and coil diameter (CD), inclined angle of tube and coil pitch of inclined helical coil type copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45 and 4.55 mm inner diameter (ID). The refrigerant mass flukes were varied from 200 to 800 [$kg/m^2s$] and the inlet pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in inclined helical coil tube with 2.45 mm ID are $5{\sim}10.3%$ higher than those of 4.55 mm. The heat transfer coefficients of 41.35 mm CD are $8{\sim}32.4%$ higher than those of 26.75 mm CD. Comparison between $45^{\circ}\;and\;90^{\circ}$ of coil angle, the heat transfer coefficients of $45^{\circ}$ are higher than those of $90^{\circ}$. For coil pitch of gas cooler, the heat transfer coefficients of inclined helical coil gas cooler with coil pitch of 5 mm are similar to those of 10 and 15 mm.

Optimum Controller Design of a Water Cooler for Machine Tools Based on the State Space Model (상태공간 모델링에 의한 공작기계용 수냉각기의 최적제어기 설계)

  • Jeong, Seok-Kwon;Kim, Sang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.782-790
    • /
    • 2011
  • Typical temperature control methods of a cooler for machine tools are hot-gas bypass and compressor variable speed control. The hot-gas bypass system has been widely used to control the cooler temperature in many general industrial fields. On the contrary, the compressor variable speed control is focused on special fields such as aerospace and high precision machine tools which need high precision control. The variable speed control system usually has two control variables such as target temperature and superheat. In other words, the variable speed control system is basically multi-input multi-output(MIMO) system. In spite of MIMO system, the proportional integral derivative(PID) feedback control methodology that based on single-input single-output (SISO) system is generally used for designing the variable speed control system. Therefore, it is inevitable to describe transfer functions for dynamic behaviors of every controlled variables and decide the PID gains with tremendous iteration process. Moreover, the designed PID gains do not provide optimum system performances. To solve these problems, high performance controller design method based on a state space model is suggested in this paper. An optimum controller is designed to minimize both control errors and energy inputs. This method was more simple to describe dynamic behaviors and easier to design the cooler controller which is MIMO system.

Heat Transfer Characteristics of Supercritical $CO_2$ in Helical Coil Gas Coolers on the Change of Coil Diameters (코일직경변화에 따른 헬리컬 코일형 가스냉각기내 초임계 이산화탄소의 냉각열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.44-48
    • /
    • 2007
  • The cooling heat transfer characteristics of supercritical $CO_2$ in a helical coil gas cooler on the change of coil diameters are experimentally investigated. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flow-meter, a pre-heater and a helical coil gas cooler (test section). The test sections are made of a copper tube which the inner diameter is 4.55 mm and the helical coil diameters are done of 26.75 mm and 41.35 mm. The mass fluxes of refrigerant are varied from 200 to 800 [$kg/m^2s$] and the inlet pressures of gas cooler are 7.5 to 10.0 (MPa). A gas cooler with helical coil diameter of 26.75 mm has larger heat transfer coefficient than that of 41.35 mm. Also, when compared with experimental data and published correlations avaliable, most of correlations are under-predicted, but Pitla published correlations avaliable, most of correlations are under-predicted, but Pitla et al.'s correlation shows a relatively good coincidence with the experimental data except the region of pseudo critical temperature.

  • PDF

Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating Using Carbon Dioxide (이산화탄소를 이용한 온수급탕용 초월임계사이클의 성능에 대한 실험적 연구)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.461-470
    • /
    • 2003
  • The purpose of this study is to investigate the performance of a transcritical cycle for hot water heating using $CO_2$ as a working fluid. Some of the main parameters that affect the practical performance of the $CO_2$ system are discussed; the performance on the variation of refrigerant charge, changes in flow conditions of secondary fluids, and that with or without internal heat exchanger, The experimental results show that the optimum charge is approximately the same for various mass flow rates of the secondary fluid at gas cooler. The experimental results on the effect of secondary fluids are in general agreement with the experimental results of transcritical cycle in the open literature and show similar trend for conventional subcritical vapor compression cycles. The heat exchanger effectiveness increases with an increase of the heat exchange area of the internal heat exchanger regardless of the mass flow rate at the gas cooler.

Fabrication of a Micro Cooler using Thermoelectric Thin Film (열전박막을 이용한 마이크로 냉각소자 제작)

  • Han, S.W.;Choi, H.J.;Kim, B.I.;Kim, B.M.;Kim, D.H.;Kim, O.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1459-1462
    • /
    • 2007
  • In general a thermoelectric cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using $Bi_2Te_3$ (N type) and $Bi_{0.5}Sb_{1.5}Te_3$ (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current.

  • PDF