• Title/Summary/Keyword: convolutional network

Search Result 1,680, Processing Time 0.034 seconds

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

Convolutional Neural Network with Particle Filter Approach for Visual Tracking

  • Tyan, Vladimir;Kim, Doohyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.693-709
    • /
    • 2018
  • In this paper, we propose a compact Convolutional Neural Network (CNN)-based tracker in conjunction with a particle filter architecture, in which the CNN model operates as an accurate candidates estimator, while the particle filter predicts the target motion dynamics, lowering the overall number of calculations and refines the resulting target bounding box. Experiments were conducted on the Online Object Tracking Benchmark (OTB) [34] dataset and comparison analysis in respect to other state-of-art has been performed based on accuracy and precision, indicating that the proposed algorithm outperforms all state-of-the-art trackers included in the OTB dataset, specifically, TLD [16], MIL [1], SCM [36] and ASLA [15]. Also, a comprehensive speed performance analysis showed average frames per second (FPS) among the top-10 trackers from the OTB dataset [34].

A Despeckling Method Using Deep Convolutional Neural Network in Synthetic Aperture Radar Image (깊은 합성곱 신경망을 이용한 Synthetic Aperture Radar 영상 내 반전 잡음 성분 제거 기법)

  • Kim, Moonheum;Lee, Junghyun;Jeong, Jaechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.66-69
    • /
    • 2017
  • 본 논문에서는 깊은 합성 곱 신경망 (Deep Convolutional Neural Network) 를 이용해서 SAR (Synthetic Aperture Radar) 영상의 반전 잡음 (speckle noise) 성분을 제거하는 기법을 제안하고자 한다. Deep Convolutional Neural Network는 이미지의 데이터 특성에 적합한 딥 러닝 방법이고, 이는 SAR 위성영상의 반전 잡음 제거에 사용해도 효과적이다. 반전 잡음 필터 모델 추정을 위한 학습은 임의로 반전 잡음을 합성한 트레이닝 이미지들과 원본 트레이닝 이미지들을 이용한 회귀모델을 통해 진행된다. 학습을 통해 얻은 반전 잡음 필터는 기존 알고리즘에 비해 우수한 외곽선 보존 성능을 나타냄을 확인하였다.

  • PDF

Content-Aware Convolutional Neural Network for Object Recognition Task

  • Poernomo, Alvin;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In existing Convolutional Neural Network (CNNs) for object recognition task, there are only few efforts known to reduce the noises from the images. Both convolution and pooling layers perform the features extraction without considering the noises of the input image, treating all pixels equally important. In computer vision field, there has been a study to weight a pixel importance. Seam carving resizes an image by sacrificing the least important pixels, leaving only the most important ones. We propose a new way to combine seam carving approach with current existing CNN model for object recognition task. We attempt to remove the noises or the "unimportant" pixels in the image before doing convolution and pooling, in order to get better feature representatives. Our model shows promising result with CIFAR-10 dataset.

CNN Based Lithography Hotspot Detection

  • Shin, Moojoon;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.208-215
    • /
    • 2016
  • The lithography hotspot detection process is crucial for semiconductor design development process. But, the lithography hotspot detection using optical simulation method takes much time and it slowdown the layout design development cycle. Though the geometry based approach is introduced as an alternative, it still revealed low detection performance and sophisticated framework. To solve this problem, we introduce a deep convolutional neural network based hotspot detection method. Our method made better results in ICCCAD 2012 dataset. To reach this score, we used lots of technical effort to improve the result in addition to just utilizing the nature of convolutional neural network. Inspection region reduction, data augmentation, DBSCAN clustering helped our work more stable and faster.

Iceberg-Ship Classification in SAR Images Using Convolutional Neural Network with Transfer Learning

  • Choi, Jeongwhan
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.35-44
    • /
    • 2018
  • Monitoring through Synthesis Aperture Radar (SAR) is responsible for marine safety from floating icebergs. However, there are limits to distinguishing between icebergs and ships in SAR images. Convolutional Neural Network (CNN) is used to distinguish the iceberg from the ship. The goal of this paper is to increase the accuracy of identifying icebergs from SAR images. The metrics for performance evaluation uses the log loss. The two-layer CNN model proposed in research of C.Bentes et al.[1] is used as a benchmark model and compared with the four-layer CNN model using data augmentation. Finally, the performance of the final CNN model using the VGG-16 pre-trained model is compared with the previous model. This paper shows how to improve the benchmark model and propose the final CNN model.

Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling

  • Jung, Hyungjoo;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1659-1668
    • /
    • 2016
  • Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling method. Using a parametric convolutional network, our approach learns the relation of various monocular cues, which make a coarse global prediction. We also leverage the local prediction to refine the global prediction. It is practically estimated in a non-parametric framework. The integration of local and global predictions is accomplished by concatenating the feature maps of the global prediction with those from local ones. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively.

A low-cost compensated approximate multiplier for Bfloat16 data processing on convolutional neural network inference

  • Kim, HyunJin
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.684-693
    • /
    • 2021
  • This paper presents a low-cost two-stage approximate multiplier for bfloat16 (brain floating-point) data processing. For cost-efficient approximate multiplication, the first stage implements Mitchell's algorithm that performs the approximate multiplication using only two adders. The second stage adopts the exact multiplication to compensate for the error from the first stage by multiplying error terms and adding its truncated result to the final output. In our design, the low-cost multiplications in both stages can reduce hardware costs significantly and provide low relative errors by compensating for the error from the first stage. We apply our approximate multiplier to the convolutional neural network (CNN) inferences, which shows small accuracy drops with well-known pre-trained models for the ImageNet database. Therefore, our design allows low-cost CNN inference systems with high test accuracy.

A Facial Expression Recognition Method Using Two-Stream Convolutional Networks in Natural Scenes

  • Zhao, Lixin
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.399-410
    • /
    • 2021
  • Aiming at the problem that complex external variables in natural scenes have a greater impact on facial expression recognition results, a facial expression recognition method based on two-stream convolutional neural network is proposed. The model introduces exponentially enhanced shared input weights before each level of convolution input, and uses soft attention mechanism modules on the space-time features of the combination of static and dynamic streams. This enables the network to autonomously find areas that are more relevant to the expression category and pay more attention to these areas. Through these means, the information of irrelevant interference areas is suppressed. In order to solve the problem of poor local robustness caused by lighting and expression changes, this paper also performs lighting preprocessing with the lighting preprocessing chain algorithm to eliminate most of the lighting effects. Experimental results on AFEW6.0 and Multi-PIE datasets show that the recognition rates of this method are 95.05% and 61.40%, respectively, which are better than other comparison methods.

Deep Learning-Based Real-Time Pedestrian Detection on Embedded GPUs (임베디드 GPU에서의 딥러닝 기반 실시간 보행자 탐지 기법)

  • Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.357-360
    • /
    • 2019
  • We propose an efficient single convolutional neural network (CNN) for pedestrian detection on embedded GPUs. We first determine the optimal number of the convolutional layers and hyper-parameters for a lightweight CNN. Then, we employ a multi-scale approach to make the network robust to the sizes of the pedestrians in images. Experimental results demonstrate that the proposed algorithm is capable of real-time operation, while providing higher detection performance than conventional algorithms.