
1  |   INTRODUCTION

The floating-point format is used to represent wide-ranged 
fractional numbers. Current floating-point standards occupy 32 
bits (single precision) or 64 bits (double precision). Although 
these standards can represent any fractional number precisely, 
32 bit or 64 bit data requirements are a great burden in several 
error-resilient applications. Low-precision applications prefer 
16 bit floating-point formats to overcome the storage overhead 
and tremendous computation resource of standard floating-
point data processing. Notably, the 16 bit bfloat16 format was 
proposed to maintain the dynamic range representation with an 
8 bit exponent. Compared with the 32 bit floating-point stan-
dard (FP32), the fraction is represented only using 7 bits.

In digital signal processing, multiplication is one of the 
basic operations. The trade-off between cost and accuracy in 

multiplication reduces hardware costs by sacrificing multi-
plication accuracy. Hardware-based approximate multipliers 
convert their multiplication into other data processing oper-
ations. The lookup table-based approximate multiplier pro-
duces approximate output based on the values in the memory 
block, [1,2] so that there are large memory requirements. In 
n-bit integer multiplication, the approximate multiplier with 
n-bit fixed-width output discards n low-order output bits [3–
7]. The arithmetic-based multiplier adopts low-cost arith-
metic operations to approximate exact multiplication with 
affordable accuracy degradation [1,2,8–22].

The logarithmic multiplier can suppress the worst-case rel-
ative error (rerrworst) under its designed limitation. By using the 
log-linear representation, it is suitable for multiplication with 
wide-ranging values. Notably, Mitchell's algorithm [1] con-
verts two fixed-point numbers into floating-point or log-linear 
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representation and then approximates its multiplication by 
shifting the added fractions. Compared with the exact fixed-
point multiplier, Mitchell's algorithm shows 3.8% average rel-
ative error (rerravg) and 11.11% rerrworst [1]. The approximate 
multiplications in [11,21,22] truncate fractions to decrease the 
hardware costs of multiplying fractions, and rerravg is close to 
zero due to the unbiased fractions. However, rerrworst increases 
depending on the amount of truncated information.

Iterative approximate multipliers have been shown to 
achieve low relative error [1,8,22,23]. A stage transfers error 
terms into the next stage that compensates for the error from 
the first stage. For example, when Mitchell's algorithm is ap-
plied to n stages, (11.11%)n rerrworst can be achieved. For the 
fixed-point multiplication, leading-one detectors (LODs) and 
their encoders are needed to obtain log-linear representation 
in each stage, which increases hardware costs significantly.

Moreover, the floating-point format represents a number 
using the normalized significand (1 + xA, 0 ≤ xA < 1). When 
multiplying two floating-point numbers, exponents and signif-
icands of two numbers are added and multiplied, respectively. 
Therefore, Mitchell's algorithm does not require LODs to ob-
tain log-linear representation. However, it is implemented at 
low costs, and rerrworst is still unchanged as 11.11%. If Mitchell's 
algorithm is applied iteratively, all stages except for the first 
stage require LODs and encoders, so that the iterative multipli-
cation cannot make any benefits in terms of hardware costs. We 
have the motivation that different types of approximate mul-
tipliers are chained in the second stage to compensate for the 
error from the first stage. Because rerrworst from the first stage 
is 11.11%, we assume that the truncated fractions in the second 
stage do not degrade the error compensation significantly.

This paper presents a cost-efficient two-stage approximate 
multiplication for processing bfloat16 data. Mitchell's algo-
rithm in the first stage is implemented using only two adders. 
The fraction parts are transferred into the second stage as error 
terms. The second stage adopts low-cost exact multiplication to 
avoid the use of LODs and their encoders. In the second stage, 
several low-order bits of error terms are discarded to reduce 
hardware overhead. Because the number of bits in the fraction 
part is fixed, discarded low-order bits make a low impact on the 
relative error. Then, our design multiplies the error terms from 
the first stage and adds the multiplication result to the final out-
put. Compared with existing approximate multipliers, low-cost 
multiplications without LODs in both stages can reduce hard-
ware overhead significantly and achieve low relative errors.

2  |   PRELIMINARIES

2.1  |  Bfloat 16 format

The bfloat16 format is a floating-point number representa-
tion that consists of 16 bits. Compared with FP32 format, the 

low-order bits of the fraction part are discarded while keep-
ing the 8 bit exponent. A bfloat16 data operation is simplified 
by flushing the subnormal inputs and outputs and limiting 
rounding modes [24–26]. This format is not yet standardized, 
but it is preferable in neural network acceleration because 
of its half of the memory requirements and the advantage of 
adoptability in both training and inferencing [26].

In the floating-point multiplication, exponents of two 
numbers are added, and then bias 12710 (7Fh) is subtracted 
to retrieve the output exponent. Since the number of bit in 
the fractional part reduces to 7 bits, 8 bit significands are 
multiplied and normalized to get the normalized output sig-
nificand. When normalizing the output significand, a shifter 
aligns the fraction, and then the output exponent increases by 
one. For example, when significands 1.100 000 02 and 1.000 
0002 are multiplied, the unnormalized output significand is 
10.0100, …, 02, which is normalized into 1.001 00, …, 02. 
When any exponent of two bfloat16 formatted numbers are 
00h, both the output exponent and fraction are flushed to 00, 
…, 0, indicating that the multiplication output is 0. If any 
exponent of two bfloat16 numbers is FFh for representing the 
infinite number, the output exponent is FFh. When calculat-
ing the output exponent, if its result is out of the range of the 
normal bfloat16 number, the output exponent becomes 00h or 
FFh. A two-input exclusive-OR gate can be used to calculate 
the output sign.

2.2  |  Mitchell's algorithm

In the log-linear representation, Mitchell's algorithm approxi-
mates multiplication using adders and shifters without any 
multiplier [1]. A positive fractional number A is expressed as

In (1), where kA and xA denote the exponent and fraction of 
A, respectively. The multiplication of two positive numbers A 
and B, A·B, is given by

When applying a logarithmic conversion on both sizes of 
(2),

When C = A·B·and C = 2kC  
(
1 + xC

)
, kC ∈ ℤ, 0 ≤ xC < 1, 

kC and xC are obtained as follows:

(1)A = 2kA
⋅

(
1 + xA

)
, kA ∈ ℤ, 0 ≤ xA < 1.

(2)

A ⋅ B = 2kA
⋅

(
1 + xA

)
⋅ 2kB

⋅

(
1 + xB

)
= 2kA + kB

⋅

(
1 + xA

)
⋅

(
1 + xB

)
.

(3)log2 (A ⋅ B) = kA + kB + log2

((
1 + xA

)
⋅

(
1 + xB

))
.

(4)

{
kC = kA+kB+1, xC = xA+xB−1, xA+xB ≥1

kC = kA+kB, xC = xA+xB, xA+xB <1.
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Considering (4), the carry-out of xA + xB is added to kA 
+ kB. Given any binary fractional numbers, two adders are 
needed to calculate the exponent and fraction of C. Unlike 
general multipliers, when any input value is zero, the out-
put cannot be zero in Mitchell's algorithm. Therefore, 
zero detectors [27] should be implemented additionally. 
When handling bfloat16 numbers, the implementation of 
Mitchell's algorithm should check whether kC is out of 
range and outputs can be zero, infinite floating numbers, 
or neither.

2.3  |  Error calculation and unbiasing

When the error of an approximate multiplication MULappr 
from the exact multiplication MULexact is defined as 
err = ||MULexact

|| − |||MULappr
|||, the relative error (denoted 

as rerr) is expressed as follows:

In the log-linear representation, a fraction resolution 
depends on the assigned bits. Particularly, the unbiasing 
technique for the truncated fractions in Mitchell's algo-
rithm is shown in [21,22] where the adder of n-bit frac-
tions xA and xB receives a carry-in value of 2−n. In the 
unbiased n-bit Mitchell's algorithm, rerr is expressed as 
follows:

In (6), if 2−n and 2−n+1 are elmininated, (6) represents 
rerr of the original Mitchell's algorithm [1]. Therefore, re-
rrworst = 

(||rerrmax
|| > ||rerrmin

|| ?rerrmax: rerrmin

)
. For bfloat16 

data processing with n = 7, the original Mitchell's algorithm 
has rerrworst = 11.11% when xA = xB = 0.5 and rerrmin = 0.0%. 
The unbiased Mitchell's algorithm has rerrworst = −0.781% 
for xA = 0.02, xB = 0.02, while rerrworst reduces to 10.65% for 
xA = 0.011 111 12, xB = 0.100 000 02.

3  |   PROPOSED APPROXIMATE 
MULTIPLICATION

In the bfloat16 data processing, multiply-accumulate opera-
tions can accumulate multiplication results using different 
formats, such as FP32 or scaled fixed-point data. Referencing, 

[24–26] this paper assumes that the multiplication result is 
represented as an FP32 value.

3.1  |  Motivations of proposed design

In Mitchell's algorithm, high rerrworst (11.11%) is the most se-
rious problem degrading target applications. In, [1] iterative 
multiplication was briefly discussed; the error terms from 
a stage are multiplied in the next stage and added to com-
pensate for the error from the previous stage. In the bfloat16 
data processing, the iterative multiplication has several draw-
backs. Based on (2) and (4), the error terms of the first stage, 
Aef and Bef, are as follows:

The error terms are calculated depending on xA  +  xB. 
When xA + xB ≥ 1, 2's complements of xA and xB represent 
1−xA and 1−xB, respectively, so that the error term calcula-
tion inverts all bits of xA and xB and adds value of “1.” Two 
adders are needed to calculate error terms toward the next 
stage. When the next stage adopts Mitchell's algorithm, error 
terms Aef and Bef should be transformed into log-linear repre-
sentations, which requires LODs and encoders [22]. Besides, 
a 2n-bit adder is required to sum n-bit multiplication results 
from all stages.

To overcome these drawbacks, we propose a new two-
stage compensated approximate multiplier. The first stage 
implements Mitchell's algorithm, and the second stage adopts 
the fixed-width multiplier with 7 bit output. After discarding 
several least significant bits (LSBs) of error terms Aef and Bef 
into A′

f
 and B′

f
, two n'-bit values are exactly multiplied and 

(2n'−n)-bit LSBs of its multiplication output are discarded in 
the fixed-width multiplication, producing (n = 7)-bit output. 
Because the second stage adopts the exact multiplier with 
truncated values, LODs and encoders are not required. The 
fixed-width multiplication reduces hardware costs of the 
adder to sum the outputs from both stages. The proposed de-
sign also approximates the error terms from the first stage, 
where 2's complement conversion requires two adders to 
transfer the exact error terms. The proposed design adopts 1's 
complement conversion to eliminate the need for the two ad-
ders. Because the bfloat16 format has the fixed resolution of 
(2−7) in fractions, the effect of 1's complement conversion on 
the error term is insignificant.

The multiplication in bfloat16 data processing can adopt 
the technique of, [11] which discards LSBs of inputs and 
multiplies them. The unbiasing technique [11] does not need 
high hardware costs, but it has small rerravg values. However, 
as the number of discarded bits increases, rerrworst increases 

(5)rerr =

||MULexact
|| − |||MULappr

|||
|MUL|exact

.

(6)

⎧⎪⎪⎨⎪⎪⎩

�
1−xA

�
⋅

�
1−xB

�
−2−n+1

�
1+xA

�
⋅

�
1+xB

� , xA+xB+2
−n

≥1

xA ⋅xB−2−n

�
1+xA

�
⋅

�
1+xB

� , xA+xB+2
−n

<1

.

(7)

{
Aef =2kA

⋅

(
1−xA

)
, Bef =2kB

⋅

(
1−xB

)
, xA+xB ≥1

Aef =2kA
⋅xA, Bef =2kB

⋅xB, xA+xB <1.
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rapidly. In our design, although the second stage consists of 
a multiplier with truncated values, rerr degraded smoothly 
because the second stage compensates for the error from the 
first stage. The fixed-width multipliers using approximate 
least significant adders [3,6] have been researched for digi-
tal signal processing. In the proposed design, the fixed-width 
multiplication in the second stage discards the least signifi-
cant values. This study analyzes the performance of the pro-
posed approximate multiplication using different types of 
multiplications in the two stages.

3.2  |  Proposed multiplication and 
hardware structure

Figure  1  shows the structure of the proposed compensated 
logarithmic multiplier. Algorithm 1 describes its multiplica-
tion process. Given two bfloat16 data, A and B, with signs (AS, 
BS), exponents (Ae, Be), and fraction parts (Af, Bf). First, 7-bit 
Af, Bf, and the carry-in value of “1” are added in the f-Adder 
to produce unbiased 8-bit fma (line 2). If the carry-out is “1,” 
C(1)f = 2fma (line 4); otherwise, C(1)f = 2n + fma is produced 
in the 1-bit Level Shifter block (line 8). In the Error Term 
Calcuation block, 1's complement conversions using bitwise 
NOT operations are applied to obtain error terms Aef and Bef 
when the carry-out is “1” (lines 5 and 6); otherwise, Aef = Af, 

Bef = Bf (lines 9 and 10). In the Truncator block, (n−n') LSBs 
of the given error terms are discarded (lines 12 and 13) and 
multiplied to produce Cmul in the Fixed-width Multiplier block 
(line 14), so that the Fixed-width Multiplier block generates n-
bit multiplication output, denoted as C(2)f (line 15). In the m-
Adder block, 9 bit C(1)f and aligned C(2)f are added to produce 
9 bit C(1,2)f (line 16). Although two 9 bit values are added, 9 
bit m-Adder is sufficient to produce C(1,2)f because 1's com-
plement is applied in the error term calculation. Then, the 
Normalizer block generates range and the normalized Cf (lines 
17 to 23). If the output significand can be equal or greater than 
10.02, C(1, 2)f ≥ 2n+1. The fraction part of FP32 output Cf can 
be 

{
C(1, 2)b [n: 0] , 15�b0

}
, which means that 15 “0” bits are 

concatenated in a low-order (line 18). At this time, range = 1, 
which means that the output exponent should increase by “1” 
(line 19). When the output significand is smaller than 10.02, 
Cf =

{
C(1, 2)f [n − 1: 0] , 16�b0

}
 (line 21) and range  =  0 

(line 22). Zero detection is done (lines 24–26), which is not 
shown in Figure 1 for simplicity. If any exponent of A and B 
indicates the infinite value, the output exponent also indicates 
the infinite value by setting as FFh (lines 27 and 28). When 
Ae + Be + range ≥ 7Fh, Ce ⇐ Ae + Be + range − 7Fh (lines 
29 and 30). If Ce > FFh, Ce indicates the infinite value by set-
ting as FFh (lines 32 and 33). An XOR gate can produce the 
output sign value Cs (line 35). Finally, the proposed design 
returns FP32 data (Cs, Ce, Cf) (line 36).

F I G U R E  1   Structure of proposed 
design
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4  |   EXPERIMENTAL RESULTS

4.1  |  Error and cost analysis

We evaluated the proposed design and other designs in 
terms of error and hardware costs. We coded functions in C 
to emulate the hardware blocks in the multipliers. In addi-
tion, designs were coded as combinational multipliers using 
dataflow descriptions in Verilog hardware description lan-
guage (HDL), so that the adder, shifter, and exact multiplier 

used inside the multiplication are described using the HDL 
operators. The simulation data from the C function and HDL 
module of each design were compared for the equivalence 
check. The C functions were employed in the error analy-
sis and convolutional neural network (CNN) emulation. 
The HDL modules were synthesized for the hardware cost 
analysis.

For error analysis, we simulated all significand combina-
tions of 1 + xA and 1 + xB and extracted rerrworst and rerravg. 
Figure 2 summarizes rerrworst and rerravg according to n'-bit-
truncated multiplication in the second stage. In the legends 
of Figure 2, prefixes 1c and 2c mean 1's and 2's complement 
conversions of error terms, respectively. Suffixes biased and 
unbiased represent with and without unbiasing technique 
application, respectively. In Figure  2(A), when n'  =  6 and 
n' = 7, ||rerrmin

|| > ||rerrmax
||, so rerrworst was fixed as −0.781%. 

As shown in Figure  2(A), the difference between 1cunbiased 
and 2cunbiased was negligible. When n'  ≤  5, any unbiased 
multiplications had smaller |rerrworst|s than those of the bi-
ased multiplications. Because of the additional overhead of 
2's complement conversion, we concluded that the unbiasing 
technique was sufficient to reduce rerrworst in the proposed 
design. When n' = 4 and n' = 5, rerrworst = 2.25% and 0.980%, 
respectively. Figure 2(A) shows that as n’ decreased, rerrworst 
increased linearly to 11.11%. Figure  2(B) shows rerravg by 
averaging rerrs of all signifcand combinations. The unbiasing 
multiplications had small rerravgs compared with the biased 
cases for each n'. Notably, although rerravg increased by re-
ducing n’, for n' = 4 and n' = 5, rerravg = 0.408% and 0.048%, 
respectively. When n' = 1, because either A′

f
 or B′

f
 became 

00, ..., 02, there was no compensation from the second stage. 
Therefore, rerrworsts and rerravgs for n' = 0 and n' = 1 were 
equal, as shown in Figure 2.

The HDL modules were synthesized, targeting 333 MHz 
target-operating clock frequency in ultramode, using 
32  nm standard generic library and Design Compiler from 
Synopsys. The adopted cells were characterized by a typical 
process (TT), 1.05 V power source, and −40℃ temperature. 
The cells were used to generate circuit area and power reports 
with the general switching activity of 0.1. For apple-to-apple 
comparisons, all described designs implemented zero and in-
finite number detectors.

Figure 3 illustrates hardware costs in terms of circuit area 
according to n'. This summary shows that the circuit area dif-
ference between unbiased and biased cases was negligible. 
However, the differences between 1's and 2's complement 
conversions of error terms were significant. For example, 
for n'  =  5, the circuit areas of 1cunbiased and 2cunbiased were 
500 µm2 and 545.5 µm2, respectively, so that 1's complement 
conversion can reduce circuit area by 8.3%.

Several other existing logarithmic multiplications 
were evaluated. These original works were developed 
for the fixed-point multiplication based on the log-linear 
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conversion, whereas our comparisons adopted the meth-
ods for multiplying input significands approximately. 
Assuming that a design discards n−n' LSBs of the fraction 
part in bfloat16 data A and B to get truncated fractions x′

f
 

and x′
B
. Then, an (n' + 1)-bit multiplier denoted as mul(n') 

multiplies two significands 
(
1 + x�

A

)
 and 

(
1 + x�

B

)
. For ex-

ample, for 1+xA = 1.110 010 12 and 1+xB = 1.111 001 12, 
when n' = 6, x′

A
 = 0.110 0102, and x′

B
 = 0.111 0012 with 6 

bit fractions. In, [11] after discarding n – n' + 1 LSBs of 
the fraction part, 2−n� is added to both x′

A
 and x′

B
, which is 

denoted as drum(n'). In the unbiased truncation [11] with 
n' = 6, 1 + x�

A
 = 1.110 0112 and 1 + x�

B
 = 1.111 0012 are 

multiplied in drum(6), after discarding two LSBs from xA 
and xB and adding 2−6 to x′

A
 and x′

B
. Therefore, we note that 

drum(n') required (n' + 1)-bit exact multiplier to multiply 
the truncated significands. Besides, mitchell1 and mitch-
ell2 denoted the implementations of Mitchell's algorithm 
and its two-stage iterative design, where the 7 bit fractions 
of bfloat16 inputs were adopted.

Figure 4 shows the comparison in terms of circuit area and 
rerrworst of the proposed design and other existing designs, 
where proposed(n') for the proposed design are colored in 
black. The two-stage iterative Mitchell's algorithm provided 
0.71% rerrworst. However, the circuit area was 1008.8  µm2. 
Overall, when 4 ≤ n' ≤ 6, it was concluded that the proposed 
design provided better choices compared with mul(n') and 
drum(n'). For example, proposed(5) had 0.98% rerrworst and 

circuit area of 500.0  µm2. Meanwhile, mul(6) had 1.54% 
rerrworst and circuit area of 530.8 µm2.

Table  1  summarizes the total power consumption and 
rerrworst of notable approximate designs in Figure 4, where 
bfloat16 represents exact bfloat16  multiplication. In the 
proposed design, the critical path delay increased due to 
the two-stage error compensation. Compared with exact 
bfloat16 multiplication, the total power consumption of the 
multiplier significantly reduced in the proposed design for 
n' = 5 and n' = 4. Similar to the comparison of the circuit 
area and rerrworst, when total power consumptions were in a 
similar range of values, our proposed design can outperform 
others in terms of rerrworst and circuit area.

4.2  |  Evaluation on convolutional 
neural network

Our design was evaluated in CNNs using a modified Caffe 
deep learning framework [28]. In the general matrix mul-
tiplication of the modified Caffe framework, the proposed 
design was emulated after converting FP32 numbers into 
bfloat16 data. The multiplication outputs with FP32 format 
were accumulated in the matrix multiplication. For sufficient 
experiments, we evaluated our design and the counterparts 

F I G U R E  2   Relative errors according to fraction bits in the 
second stage n'. (A) rerrworst (B) rerravg

F I G U R E  3   Circuit areas according to fraction bits in the second 
stage n'

F I G U R E  4   Comparison in terms of rerrworst and hardware costs

KIM 689



on prominent pre-trained models such as AlexNet, [29] 
VGG16, [30] GoogLeNet, [31] ResNet50, [32] InceptionV4, 
[33] MobileNetV1, [34] MobileNetV2, [35] and SeNet-
ResNet50, [36] and DenseNet121. [37] The ImageNet [38] 
ILSVRC2012  validation dataset was adopted in this evalua-
tion. Table 2 summarizes the test environments with input im-
ages, where “m min side” means the image resizing by making 
the length of the minimum side m. When the image scaling was 
adopted (denoted as “scaled"), each pixel value was scaled in 
the data augmentation. The pre-trained models were obtained 
from the FP32-based training process. In this experiment, ap-
proximate multiplications were applied to the models.

Inferences using the CNN models in Table  3 were per-
formed to show Top-1 and Top-5 accuracies, where fp32, 

T A B L E  1   Comparison in terms of the total power consumption

Multiplier

rerrworst Delay Circuit Power

(% ) (ns)
Area 
(µm2) (µW)

bfloat16a  0 2.14 647.9 67.7

Proposed(5) 0.980 2.50 500.0 47.6

Proposed(4) 2.25 2.35 436.2 40.5

Mul(6)b  1.54 1.97 530.8 51.7

Mul(5)b  4.53 1.83 437.4 39.3

Drum(7)c  −1.57 2.08 627.8 64.7

Drum(6)c  −3.15 1.92 508.9 49.2

Mitchell1d 11.11 1.48 209.5 19.4

The total power consumption was obtained on 333 MHz target-operating clock 
frequency.
aBfloat16 multiplication.
bMultiplication with (n' + 1)-bit significands.
cDRUM [11] with (n + 1)-bit significands.
dMitchell [11] multiplication with 7-bit fraction.

T A B L E  2   Image transformation for convolutional neural network 
(CNN) models

Model
Original 
image

Cropped 
image Scaleda 

AlexNet 256 × 256 256 × 256 No scale

VGG16 256 min sideb  256 × 256 No scale

GoogLeNet 256 × 256 224 × 224 No scale

ResNet50 256 × 256 224 × 224 No scale

InceptionV4 320 min sideb  299 × 299 0.017

MobileNetV1 256 min sideb  224 × 224 0.017

MobileNetV2 256 × 256 224 × 224 0.017

SeNet-ResNet50 256 min sideb  224 × 224 0.017

DenseNet121 256 min sideb  224 × 224 0.017
aScaling factor of normalizing pixel values in data augmentation.
bImage resizing by making the length of the minimum side m.

T A B L E  3   Evaluations on inference using convolutional neural 
networks (CNN)

Model Multiplier Top−1 (%) Top−5 (%)

AlexNet [29] fp32 56.82 79.95

bfloat16 56.79 79.95

mitchell1 56.55 79.79

drum(6) 56.81 79.95

proposed(4) 56.81 79.92

VGG16 [30] fp32 68.35 88.44

bfloat16 68.35 88.45

mitchell1 68.10 88.21

drum(6) 68.44 88.39

proposed(4) 68.33 88.46

GoogLeNet [31] fp32 68.92 89.14

bfloat16 68.89 89.14

mitchell1 67.62 88.50

drum(6) 68.95 89.12

proposed(4) 68.91 89.15

ResNet50 [32] fp32 72.92 91.18

bfloat16 72.93 91.19

mitchell1 70.30 89.32

drum(6) 71.64 90.29

proposed(4) 72.89 91.06

InceptionV4 [33] fp32 78.13 94.10

bfloat16 78.10 94.11

mitchell1 72.08 90.60

drum(6) 75.33 92.42

proposed(4) 78.08 94.06

MobileNetV1 [34] fp32 70.72 89.92

bfloat16 70.65 89.90

mitchell1 31.1 54.95

drum(6) 44.89 70.41

proposed(4) 68.01 88.26

MobileNetV2 [35] fp32 71.86 90.45

bfloat16 71.82 90.43

mitchell1 28.95 53.31

drum(6) 50.15 75.44

proposed(4) 69.04 88.85

SeNet-ResNet50 [36] fp32 78.06 94.18

bfloat16 79.06 94.18

mitchell1 76.24 93.06

drum(6) 77.08 93.60

proposed(4) 77.82 94.06

DenseNet121 [37] fp32 74.74 92.16

bfloat16 74.75 92.19

mitchell1 71.25 90.26

drum(6) 73.15 91.20

proposed(4) 74.46 92.10
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bfloat16, and proposed(4) denote the FP32  multiplication, 
exact bfloat16  multiplication, and proposed approximate 
multiplication for n' = 4. Besides, we compared our results 
with evaluations with Mitchell [1] and DRUM [11]  multi-
plications, which are denoted as mitchell1 and drum(6) for 
n'  =  6. Table  3  shows that proposed(4) had considerable 
accuracy drops on MobileNetV1 and MobileNetV2 mod-
els. In MobileNetV1 and MobileNetV2  models, after per-
forming the depthwise convolution for spatial filtering, the 
1 × 1 convolution was used in the pointwise convolution. In 
this convolution, the number of accumulated multiplication 
outputs for each output element was only that of input chan-
nels. Even though rerravg was small in the proposed design, 
if the number of accumulated outputs was not enough, the 

error distribution could deviate from the expected rerravg 
significantly. When n'  =  6, our Top-5 test accuracies on 
MobileNetV1 and MobileNetV2 models were enhanced up 
to 88.26% and 88.85%, respectively. In this case, the accuracy 
drops were uncritical compared with mitchell1 and drum(6). 
Therefore, we concluded that the MobileNet models required 
more accurate multiplication to obtain test accuracies close to 
the bfloat16 cases.

Except for the MobileNet models, the performance drops 
were negligible in terms of Top-1 and Top-5 test accura-
cies. Notably, when evaluating the ResNet50 model, 0.13% 
Top-5 accuracy was degraded compared with that using 
bfloat16 multiplication. Besides, compared with the evalua-
tion results of mitchell1 and drum(6), which were significantly 

F I G U R E  5   Inference accuracies according to fraction bits in the second stage n'

KIM 691



degraded on InceptionV4 and DenseNet121 models, the pro-
posed design did not show considerable performance deg-
radation. These performance comparisons revealed that the 
proposed design could well-compensate for errors on CNN 
inferences.

Figure 5 illustrates Top-1 and Top-5 accuracies with 
ResNet50, [32] MobileNetV2, [35] and DenseNet121 
[37] models by sweeping n'. Notably, there was no differ-
ence in accuracy between the cases of n' = 0 and n' = 1. 
As mentioned before, because the second stage cannot 
compensate for the error from the first stage with n' = 1, 
the accuracy was not enhanced when n’ = 1. On ResNet50 
and DenseNet121 models, when n' ≥ 4, there were no sig-
nificant test accuracy drops (under 0.2%). However, as 
n' decreased, we concluded that the degraded rerr of the 
proposed design had adverse effects on the inference per-
formance. Meanwhile, the test accuracy of MobileNetV2 
was significantly affected depending on n'. When n' = 1, 
Top-1 and Top-5 test accuracies were only 33.90% and 
59.19%, respectively. These results showed that the 
layer structure of MobileNetV2 could be vulnerable to 
the degree of multiplication approximation. For obtain-
ing better test accuracy on the MobileNetV2 model, we 
concluded that the design with n' > 4 could be valid in 
terms of hardware costs and test accuracy. For exam-
ple, the proposed design with n' = 5 can reduce the total 
power consumption of the multiplier by 30% and achieve 
89.68% Top-5 test accuracy on the MobileNetV2 model, 
where the accuracy drop was under 2%, compared with 
that of the bfloat16 case. Overall, we concluded that low 
rerrworst and rerravg of the proposed compensated approx-
imate multiplication could provide low-power solutions 
on the inference accuracies for the conventional pre-
trained CNN models.

5  |   CONCLUSION

The proposed approximate multiplier can have good error 
distribution with reduced hardware costs. The proposed de-
sign adopts different types of multipliers in two stages, so 
that our proposed method overcomes the drawbacks of exist-
ing designs for the bfloat16 data processing in terms of hard-
ware costs. Based on the error and cost analysis, our design 
can provide better choices using the approximate multiplica-
tion. Above all, based on the experiment results from various 
CNN inferences, we concluded that the proposed approxi-
mate multiplier can be useful in CNN inferences, allowing 
affordable error.
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