
1  |   INTRODUCTION

The floating-point format is used to represent wide-ranged
fractional numbers. Current floating-point standards occupy 32
bits (single precision) or 64 bits (double precision). Although
these standards can represent any fractional number precisely,
32 bit or 64 bit data requirements are a great burden in several
error-resilient applications. Low-precision applications prefer
16 bit floating-point formats to overcome the storage overhead
and tremendous computation resource of standard floating-
point data processing. Notably, the 16 bit bfloat16 format was
proposed to maintain the dynamic range representation with an
8 bit exponent. Compared with the 32 bit floating-point stan-
dard (FP32), the fraction is represented only using 7 bits.

In digital signal processing, multiplication is one of the
basic operations. The trade-off between cost and accuracy in

multiplication reduces hardware costs by sacrificing multi-
plication accuracy. Hardware-based approximate multipliers
convert their multiplication into other data processing oper-
ations. The lookup table-based approximate multiplier pro-
duces approximate output based on the values in the memory
block, [1,2] so that there are large memory requirements. In
n-bit integer multiplication, the approximate multiplier with
n-bit fixed-width output discards n low-order output bits [3–
7]. The arithmetic-based multiplier adopts low-cost arith-
metic operations to approximate exact multiplication with
affordable accuracy degradation [1,2,8–22].

The logarithmic multiplier can suppress the worst-case rel-
ative error (rerrworst) under its designed limitation. By using the
log-linear representation, it is suitable for multiplication with
wide-ranging values. Notably, Mitchell's algorithm [1] con-
verts two fixed-point numbers into floating-point or log-linear

Received: 25 September 2020  |  Revised: 3 January 2021  |  Accepted: 25 February 2021

DOI: 10.4218/etrij.2020-0370

O R I G I N A L A R T I C L E

A low-cost compensated approximate multiplier for Bfloat16 data
processing on convolutional neural network inference

HyunJin Kim

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

School of EEE, Dankook University,
Yongin, Rep. of Korea

Correspondence
HyunJin Kim, School of EEE, Dankook
University, Youngin, Rep. of Korea.
Email: hyunjin2.kim@gmail.com

Funding information
This research was supported by the research
fund of Dankook University in 2018.

This paper presents a low-cost two-stage approximate multiplier for bfloat16 (brain
floating-point) data processing. For cost-efficient approximate multiplication, the
first stage implements Mitchell's algorithm that performs the approximate multipli-
cation using only two adders. The second stage adopts the exact multiplication to
compensate for the error from the first stage by multiplying error terms and adding its
truncated result to the final output. In our design, the low-cost multiplications in both
stages can reduce hardware costs significantly and provide low relative errors by
compensating for the error from the first stage. We apply our approximate multiplier
to the convolutional neural network (CNN) inferences, which shows small accuracy
drops with well-known pre-trained models for the ImageNet database. Therefore, our
design allows low-cost CNN inference systems with high test accuracy.

K E Y W O R D S

Approximate computing, bfloat16 format, convolutional neural network, logarithmic multiplier,
Mitchell's algorithm

ETRI Journal. 2021;43(4):684–693.wileyonlinelibrary.com/journal/etrij684

1225-6463/$ © 2021 ETRI

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0001-5017-3995
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:hyunjin2.kim@gmail.com

representation and then approximates its multiplication by
shifting the added fractions. Compared with the exact fixed-
point multiplier, Mitchell's algorithm shows 3.8% average rel-
ative error (rerravg) and 11.11% rerrworst [1]. The approximate
multiplications in [11,21,22] truncate fractions to decrease the
hardware costs of multiplying fractions, and rerravg is close to
zero due to the unbiased fractions. However, rerrworst increases
depending on the amount of truncated information.

Iterative approximate multipliers have been shown to
achieve low relative error [1,8,22,23]. A stage transfers error
terms into the next stage that compensates for the error from
the first stage. For example, when Mitchell's algorithm is ap-
plied to n stages, (11.11%)n rerrworst can be achieved. For the
fixed-point multiplication, leading-one detectors (LODs) and
their encoders are needed to obtain log-linear representation
in each stage, which increases hardware costs significantly.

Moreover, the floating-point format represents a number
using the normalized significand (1 + xA, 0 ≤ xA < 1). When
multiplying two floating-point numbers, exponents and signif-
icands of two numbers are added and multiplied, respectively.
Therefore, Mitchell's algorithm does not require LODs to ob-
tain log-linear representation. However, it is implemented at
low costs, and rerrworst is still unchanged as 11.11%. If Mitchell's
algorithm is applied iteratively, all stages except for the first
stage require LODs and encoders, so that the iterative multipli-
cation cannot make any benefits in terms of hardware costs. We
have the motivation that different types of approximate mul-
tipliers are chained in the second stage to compensate for the
error from the first stage. Because rerrworst from the first stage
is 11.11%, we assume that the truncated fractions in the second
stage do not degrade the error compensation significantly.

This paper presents a cost-efficient two-stage approximate
multiplication for processing bfloat16 data. Mitchell's algo-
rithm in the first stage is implemented using only two adders.
The fraction parts are transferred into the second stage as error
terms. The second stage adopts low-cost exact multiplication to
avoid the use of LODs and their encoders. In the second stage,
several low-order bits of error terms are discarded to reduce
hardware overhead. Because the number of bits in the fraction
part is fixed, discarded low-order bits make a low impact on the
relative error. Then, our design multiplies the error terms from
the first stage and adds the multiplication result to the final out-
put. Compared with existing approximate multipliers, low-cost
multiplications without LODs in both stages can reduce hard-
ware overhead significantly and achieve low relative errors.

2  |   PRELIMINARIES

2.1  |  Bfloat 16 format

The bfloat16 format is a floating-point number representa-
tion that consists of 16 bits. Compared with FP32 format, the

low-order bits of the fraction part are discarded while keep-
ing the 8 bit exponent. A bfloat16 data operation is simplified
by flushing the subnormal inputs and outputs and limiting
rounding modes [24–26]. This format is not yet standardized,
but it is preferable in neural network acceleration because
of its half of the memory requirements and the advantage of
adoptability in both training and inferencing [26].

In the floating-point multiplication, exponents of two
numbers are added, and then bias 12710 (7Fh) is subtracted
to retrieve the output exponent. Since the number of bit in
the fractional part reduces to 7 bits, 8 bit significands are
multiplied and normalized to get the normalized output sig-
nificand. When normalizing the output significand, a shifter
aligns the fraction, and then the output exponent increases by
one. For example, when significands 1.100 000 02 and 1.000
0002 are multiplied, the unnormalized output significand is
10.0100, …, 02, which is normalized into 1.001 00, …, 02.
When any exponent of two bfloat16 formatted numbers are
00h, both the output exponent and fraction are flushed to 00,
…, 0, indicating that the multiplication output is 0. If any
exponent of two bfloat16 numbers is FFh for representing the
infinite number, the output exponent is FFh. When calculat-
ing the output exponent, if its result is out of the range of the
normal bfloat16 number, the output exponent becomes 00h or
FFh. A two-input exclusive-OR gate can be used to calculate
the output sign.

2.2  |  Mitchell's algorithm

In the log-linear representation, Mitchell's algorithm approxi-
mates multiplication using adders and shifters without any
multiplier [1]. A positive fractional number A is expressed as

In (1), where kA and xA denote the exponent and fraction of
A, respectively. The multiplication of two positive numbers A
and B, A·B, is given by

When applying a logarithmic conversion on both sizes of
(2),

When C = A·B·and C = 2kC
(
1 + xC

)
, kC ∈ ℤ, 0 ≤ xC < 1,

kC and xC are obtained as follows:

(1)A = 2kA
⋅

(
1 + xA

)
, kA ∈ ℤ, 0 ≤ xA < 1.

(2)

A ⋅ B = 2kA
⋅

(
1 + xA

)
⋅ 2kB

⋅

(
1 + xB

)
= 2kA + kB

⋅

(
1 + xA

)
⋅

(
1 + xB

)
.

(3)log2 (A ⋅ B) = kA + kB + log2

((
1 + xA

)
⋅

(
1 + xB

))
.

(4)

{
kC = kA+kB+1, xC = xA+xB−1, xA+xB ≥1

kC = kA+kB, xC = xA+xB, xA+xB <1.

KIM 685

Considering (4), the carry-out of xA + xB is added to kA
+ kB. Given any binary fractional numbers, two adders are
needed to calculate the exponent and fraction of C. Unlike
general multipliers, when any input value is zero, the out-
put cannot be zero in Mitchell's algorithm. Therefore,
zero detectors [27] should be implemented additionally.
When handling bfloat16 numbers, the implementation of
Mitchell's algorithm should check whether kC is out of
range and outputs can be zero, infinite floating numbers,
or neither.

2.3  |  Error calculation and unbiasing

When the error of an approximate multiplication MULappr
from the exact multiplication MULexact is defined as
err = ||MULexact

|| − |||MULappr
|||, the relative error (denoted

as rerr) is expressed as follows:

In the log-linear representation, a fraction resolution
depends on the assigned bits. Particularly, the unbiasing
technique for the truncated fractions in Mitchell's algo-
rithm is shown in [21,22] where the adder of n-bit frac-
tions xA and xB receives a carry-in value of 2−n. In the
unbiased n-bit Mitchell's algorithm, rerr is expressed as
follows:

In (6), if 2−n and 2−n+1 are elmininated, (6) represents
rerr of the original Mitchell's algorithm [1]. Therefore, re-
rrworst =

(||rerrmax
|| > ||rerrmin

|| ?rerrmax: rerrmin

)
. For bfloat16

data processing with n = 7, the original Mitchell's algorithm
has rerrworst = 11.11% when xA = xB = 0.5 and rerrmin = 0.0%.
The unbiased Mitchell's algorithm has rerrworst = −0.781%
for xA = 0.02, xB = 0.02, while rerrworst reduces to 10.65% for
xA = 0.011 111 12, xB = 0.100 000 02.

3  |   PROPOSED APPROXIMATE
MULTIPLICATION

In the bfloat16 data processing, multiply-accumulate opera-
tions can accumulate multiplication results using different
formats, such as FP32 or scaled fixed-point data. Referencing,

[24–26] this paper assumes that the multiplication result is
represented as an FP32 value.

3.1  |  Motivations of proposed design

In Mitchell's algorithm, high rerrworst (11.11%) is the most se-
rious problem degrading target applications. In, [1] iterative
multiplication was briefly discussed; the error terms from
a stage are multiplied in the next stage and added to com-
pensate for the error from the previous stage. In the bfloat16
data processing, the iterative multiplication has several draw-
backs. Based on (2) and (4), the error terms of the first stage,
Aef and Bef, are as follows:

The error terms are calculated depending on xA + xB.
When xA + xB ≥ 1, 2's complements of xA and xB represent
1−xA and 1−xB, respectively, so that the error term calcula-
tion inverts all bits of xA and xB and adds value of “1.” Two
adders are needed to calculate error terms toward the next
stage. When the next stage adopts Mitchell's algorithm, error
terms Aef and Bef should be transformed into log-linear repre-
sentations, which requires LODs and encoders [22]. Besides,
a 2n-bit adder is required to sum n-bit multiplication results
from all stages.

To overcome these drawbacks, we propose a new two-
stage compensated approximate multiplier. The first stage
implements Mitchell's algorithm, and the second stage adopts
the fixed-width multiplier with 7 bit output. After discarding
several least significant bits (LSBs) of error terms Aef and Bef
into A′

f
 and B′

f
, two n'-bit values are exactly multiplied and

(2n'−n)-bit LSBs of its multiplication output are discarded in
the fixed-width multiplication, producing (n = 7)-bit output.
Because the second stage adopts the exact multiplier with
truncated values, LODs and encoders are not required. The
fixed-width multiplication reduces hardware costs of the
adder to sum the outputs from both stages. The proposed de-
sign also approximates the error terms from the first stage,
where 2's complement conversion requires two adders to
transfer the exact error terms. The proposed design adopts 1's
complement conversion to eliminate the need for the two ad-
ders. Because the bfloat16 format has the fixed resolution of
(2−7) in fractions, the effect of 1's complement conversion on
the error term is insignificant.

The multiplication in bfloat16 data processing can adopt
the technique of, [11] which discards LSBs of inputs and
multiplies them. The unbiasing technique [11] does not need
high hardware costs, but it has small rerravg values. However,
as the number of discarded bits increases, rerrworst increases

(5)rerr =

||MULexact
|| − |||MULappr

|||
|MUL|exact

.

(6)

⎧⎪⎪⎨⎪⎪⎩

�
1−xA

�
⋅

�
1−xB

�
−2−n+1

�
1+xA

�
⋅

�
1+xB

� , xA+xB+2
−n

≥1

xA ⋅xB−2−n

�
1+xA

�
⋅

�
1+xB

� , xA+xB+2
−n

<1

.

(7)

{
Aef =2kA

⋅

(
1−xA

)
, Bef =2kB

⋅

(
1−xB

)
, xA+xB ≥1

Aef =2kA
⋅xA, Bef =2kB

⋅xB, xA+xB <1.

KIM686

rapidly. In our design, although the second stage consists of
a multiplier with truncated values, rerr degraded smoothly
because the second stage compensates for the error from the
first stage. The fixed-width multipliers using approximate
least significant adders [3,6] have been researched for digi-
tal signal processing. In the proposed design, the fixed-width
multiplication in the second stage discards the least signifi-
cant values. This study analyzes the performance of the pro-
posed approximate multiplication using different types of
multiplications in the two stages.

3.2  |  Proposed multiplication and
hardware structure

Figure 1 shows the structure of the proposed compensated
logarithmic multiplier. Algorithm 1 describes its multiplica-
tion process. Given two bfloat16 data, A and B, with signs (AS,
BS), exponents (Ae, Be), and fraction parts (Af, Bf). First, 7-bit
Af, Bf, and the carry-in value of “1” are added in the f-Adder
to produce unbiased 8-bit fma (line 2). If the carry-out is “1,”
C(1)f = 2fma (line 4); otherwise, C(1)f = 2n + fma is produced
in the 1-bit Level Shifter block (line 8). In the Error Term
Calcuation block, 1's complement conversions using bitwise
NOT operations are applied to obtain error terms Aef and Bef
when the carry-out is “1” (lines 5 and 6); otherwise, Aef = Af,

Bef = Bf (lines 9 and 10). In the Truncator block, (n−n') LSBs
of the given error terms are discarded (lines 12 and 13) and
multiplied to produce Cmul in the Fixed-width Multiplier block
(line 14), so that the Fixed-width Multiplier block generates n-
bit multiplication output, denoted as C(2)f (line 15). In the m-
Adder block, 9 bit C(1)f and aligned C(2)f are added to produce
9 bit C(1,2)f (line 16). Although two 9 bit values are added, 9
bit m-Adder is sufficient to produce C(1,2)f because 1's com-
plement is applied in the error term calculation. Then, the
Normalizer block generates range and the normalized Cf (lines
17 to 23). If the output significand can be equal or greater than
10.02, C(1, 2)f ≥ 2n+1. The fraction part of FP32 output Cf can
be

{
C(1, 2)b [n: 0] , 15�b0

}
, which means that 15 “0” bits are

concatenated in a low-order (line 18). At this time, range = 1,
which means that the output exponent should increase by “1”
(line 19). When the output significand is smaller than 10.02,
Cf =

{
C(1, 2)f [n − 1: 0] , 16�b0

}
 (line 21) and range = 0

(line 22). Zero detection is done (lines 24–26), which is not
shown in Figure 1 for simplicity. If any exponent of A and B
indicates the infinite value, the output exponent also indicates
the infinite value by setting as FFh (lines 27 and 28). When
Ae + Be + range ≥ 7Fh, Ce ⇐ Ae + Be + range − 7Fh (lines
29 and 30). If Ce > FFh, Ce indicates the infinite value by set-
ting as FFh (lines 32 and 33). An XOR gate can produce the
output sign value Cs (line 35). Finally, the proposed design
returns FP32 data (Cs, Ce, Cf) (line 36).

F I G U R E 1   Structure of proposed
design

KIM 687

4  |   EXPERIMENTAL RESULTS

4.1  |  Error and cost analysis

We evaluated the proposed design and other designs in
terms of error and hardware costs. We coded functions in C
to emulate the hardware blocks in the multipliers. In addi-
tion, designs were coded as combinational multipliers using
dataflow descriptions in Verilog hardware description lan-
guage (HDL), so that the adder, shifter, and exact multiplier

used inside the multiplication are described using the HDL
operators. The simulation data from the C function and HDL
module of each design were compared for the equivalence
check. The C functions were employed in the error analy-
sis and convolutional neural network (CNN) emulation.
The HDL modules were synthesized for the hardware cost
analysis.

For error analysis, we simulated all significand combina-
tions of 1 + xA and 1 + xB and extracted rerrworst and rerravg.
Figure 2 summarizes rerrworst and rerravg according to n'-bit-
truncated multiplication in the second stage. In the legends
of Figure 2, prefixes 1c and 2c mean 1's and 2's complement
conversions of error terms, respectively. Suffixes biased and
unbiased represent with and without unbiasing technique
application, respectively. In Figure 2(A), when n' = 6 and
n' = 7, ||rerrmin

|| > ||rerrmax
||, so rerrworst was fixed as −0.781%.

As shown in Figure 2(A), the difference between 1cunbiased
and 2cunbiased was negligible. When n' ≤ 5, any unbiased
multiplications had smaller |rerrworst|s than those of the bi-
ased multiplications. Because of the additional overhead of
2's complement conversion, we concluded that the unbiasing
technique was sufficient to reduce rerrworst in the proposed
design. When n' = 4 and n' = 5, rerrworst = 2.25% and 0.980%,
respectively. Figure 2(A) shows that as n’ decreased, rerrworst
increased linearly to 11.11%. Figure 2(B) shows rerravg by
averaging rerrs of all signifcand combinations. The unbiasing
multiplications had small rerravgs compared with the biased
cases for each n'. Notably, although rerravg increased by re-
ducing n’, for n' = 4 and n' = 5, rerravg = 0.408% and 0.048%,
respectively. When n' = 1, because either A′

f
 or B′

f
 became

00, ..., 02, there was no compensation from the second stage.
Therefore, rerrworsts and rerravgs for n' = 0 and n' = 1 were
equal, as shown in Figure 2.

The HDL modules were synthesized, targeting 333 MHz
target-operating clock frequency in ultramode, using
32 nm standard generic library and Design Compiler from
Synopsys. The adopted cells were characterized by a typical
process (TT), 1.05 V power source, and −40℃ temperature.
The cells were used to generate circuit area and power reports
with the general switching activity of 0.1. For apple-to-apple
comparisons, all described designs implemented zero and in-
finite number detectors.

Figure 3 illustrates hardware costs in terms of circuit area
according to n'. This summary shows that the circuit area dif-
ference between unbiased and biased cases was negligible.
However, the differences between 1's and 2's complement
conversions of error terms were significant. For example,
for n' = 5, the circuit areas of 1cunbiased and 2cunbiased were
500 µm2 and 545.5 µm2, respectively, so that 1's complement
conversion can reduce circuit area by 8.3%.

Several other existing logarithmic multiplications
were evaluated. These original works were developed
for the fixed-point multiplication based on the log-linear

KIM688

conversion, whereas our comparisons adopted the meth-
ods for multiplying input significands approximately.
Assuming that a design discards n−n' LSBs of the fraction
part in bfloat16 data A and B to get truncated fractions x′

f

and x′
B
. Then, an (n' + 1)-bit multiplier denoted as mul(n')

multiplies two significands
(
1 + x�

A

)
 and

(
1 + x�

B

)
. For ex-

ample, for 1+xA = 1.110 010 12 and 1+xB = 1.111 001 12,
when n' = 6, x′

A
 = 0.110 0102, and x′

B
 = 0.111 0012 with 6

bit fractions. In, [11] after discarding n – n' + 1 LSBs of
the fraction part, 2−n� is added to both x′

A
 and x′

B
, which is

denoted as drum(n'). In the unbiased truncation [11] with
n' = 6, 1 + x�

A
 = 1.110 0112 and 1 + x�

B
 = 1.111 0012 are

multiplied in drum(6), after discarding two LSBs from xA
and xB and adding 2−6 to x′

A
 and x′

B
. Therefore, we note that

drum(n') required (n' + 1)-bit exact multiplier to multiply
the truncated significands. Besides, mitchell1 and mitch-
ell2 denoted the implementations of Mitchell's algorithm
and its two-stage iterative design, where the 7 bit fractions
of bfloat16 inputs were adopted.

Figure 4 shows the comparison in terms of circuit area and
rerrworst of the proposed design and other existing designs,
where proposed(n') for the proposed design are colored in
black. The two-stage iterative Mitchell's algorithm provided
0.71% rerrworst. However, the circuit area was 1008.8 µm2.
Overall, when 4 ≤ n' ≤ 6, it was concluded that the proposed
design provided better choices compared with mul(n') and
drum(n'). For example, proposed(5) had 0.98% rerrworst and

circuit area of 500.0 µm2. Meanwhile, mul(6) had 1.54%
rerrworst and circuit area of 530.8 µm2.

Table 1 summarizes the total power consumption and
rerrworst of notable approximate designs in Figure 4, where
bfloat16 represents exact bfloat16 multiplication. In the
proposed design, the critical path delay increased due to
the two-stage error compensation. Compared with exact
bfloat16 multiplication, the total power consumption of the
multiplier significantly reduced in the proposed design for
n' = 5 and n' = 4. Similar to the comparison of the circuit
area and rerrworst, when total power consumptions were in a
similar range of values, our proposed design can outperform
others in terms of rerrworst and circuit area.

4.2  |  Evaluation on convolutional
neural network

Our design was evaluated in CNNs using a modified Caffe
deep learning framework [28]. In the general matrix mul-
tiplication of the modified Caffe framework, the proposed
design was emulated after converting FP32 numbers into
bfloat16 data. The multiplication outputs with FP32 format
were accumulated in the matrix multiplication. For sufficient
experiments, we evaluated our design and the counterparts

F I G U R E 2   Relative errors according to fraction bits in the
second stage n'. (A) rerrworst (B) rerravg

F I G U R E 3   Circuit areas according to fraction bits in the second
stage n'

F I G U R E 4   Comparison in terms of rerrworst and hardware costs

KIM 689

on prominent pre-trained models such as AlexNet, [29]
VGG16, [30] GoogLeNet, [31] ResNet50, [32] InceptionV4,
[33] MobileNetV1, [34] MobileNetV2, [35] and SeNet-
ResNet50, [36] and DenseNet121. [37] The ImageNet [38]
ILSVRC2012 validation dataset was adopted in this evalua-
tion. Table 2 summarizes the test environments with input im-
ages, where “m min side” means the image resizing by making
the length of the minimum side m. When the image scaling was
adopted (denoted as “scaled"), each pixel value was scaled in
the data augmentation. The pre-trained models were obtained
from the FP32-based training process. In this experiment, ap-
proximate multiplications were applied to the models.

Inferences using the CNN models in Table 3 were per-
formed to show Top-1 and Top-5 accuracies, where fp32,

T A B L E 1   Comparison in terms of the total power consumption

Multiplier

rerrworst Delay Circuit Power

(%) (ns)
Area
(µm2) (µW)

bfloat16a  0 2.14 647.9 67.7

Proposed(5) 0.980 2.50 500.0 47.6

Proposed(4) 2.25 2.35 436.2 40.5

Mul(6)b  1.54 1.97 530.8 51.7

Mul(5)b  4.53 1.83 437.4 39.3

Drum(7)c  −1.57 2.08 627.8 64.7

Drum(6)c  −3.15 1.92 508.9 49.2

Mitchell1d 11.11 1.48 209.5 19.4

The total power consumption was obtained on 333 MHz target-operating clock
frequency.
aBfloat16 multiplication.
bMultiplication with (n' + 1)-bit significands.
cDRUM [11] with (n + 1)-bit significands.
dMitchell [11] multiplication with 7-bit fraction.

T A B L E 2   Image transformation for convolutional neural network
(CNN) models

Model
Original
image

Cropped
image Scaleda 

AlexNet 256 × 256 256 × 256 No scale

VGG16 256 min sideb  256 × 256 No scale

GoogLeNet 256 × 256 224 × 224 No scale

ResNet50 256 × 256 224 × 224 No scale

InceptionV4 320 min sideb  299 × 299 0.017

MobileNetV1 256 min sideb  224 × 224 0.017

MobileNetV2 256 × 256 224 × 224 0.017

SeNet-ResNet50 256 min sideb  224 × 224 0.017

DenseNet121 256 min sideb  224 × 224 0.017
aScaling factor of normalizing pixel values in data augmentation.
bImage resizing by making the length of the minimum side m.

T A B L E 3   Evaluations on inference using convolutional neural
networks (CNN)

Model Multiplier Top−1 (%) Top−5 (%)

AlexNet [29] fp32 56.82 79.95

bfloat16 56.79 79.95

mitchell1 56.55 79.79

drum(6) 56.81 79.95

proposed(4) 56.81 79.92

VGG16 [30] fp32 68.35 88.44

bfloat16 68.35 88.45

mitchell1 68.10 88.21

drum(6) 68.44 88.39

proposed(4) 68.33 88.46

GoogLeNet [31] fp32 68.92 89.14

bfloat16 68.89 89.14

mitchell1 67.62 88.50

drum(6) 68.95 89.12

proposed(4) 68.91 89.15

ResNet50 [32] fp32 72.92 91.18

bfloat16 72.93 91.19

mitchell1 70.30 89.32

drum(6) 71.64 90.29

proposed(4) 72.89 91.06

InceptionV4 [33] fp32 78.13 94.10

bfloat16 78.10 94.11

mitchell1 72.08 90.60

drum(6) 75.33 92.42

proposed(4) 78.08 94.06

MobileNetV1 [34] fp32 70.72 89.92

bfloat16 70.65 89.90

mitchell1 31.1 54.95

drum(6) 44.89 70.41

proposed(4) 68.01 88.26

MobileNetV2 [35] fp32 71.86 90.45

bfloat16 71.82 90.43

mitchell1 28.95 53.31

drum(6) 50.15 75.44

proposed(4) 69.04 88.85

SeNet-ResNet50 [36] fp32 78.06 94.18

bfloat16 79.06 94.18

mitchell1 76.24 93.06

drum(6) 77.08 93.60

proposed(4) 77.82 94.06

DenseNet121 [37] fp32 74.74 92.16

bfloat16 74.75 92.19

mitchell1 71.25 90.26

drum(6) 73.15 91.20

proposed(4) 74.46 92.10

KIM690

bfloat16, and proposed(4) denote the FP32 multiplication,
exact bfloat16 multiplication, and proposed approximate
multiplication for n' = 4. Besides, we compared our results
with evaluations with Mitchell [1] and DRUM [11] multi-
plications, which are denoted as mitchell1 and drum(6) for
n' = 6. Table 3 shows that proposed(4) had considerable
accuracy drops on MobileNetV1 and MobileNetV2 mod-
els. In MobileNetV1 and MobileNetV2 models, after per-
forming the depthwise convolution for spatial filtering, the
1 × 1 convolution was used in the pointwise convolution. In
this convolution, the number of accumulated multiplication
outputs for each output element was only that of input chan-
nels. Even though rerravg was small in the proposed design,
if the number of accumulated outputs was not enough, the

error distribution could deviate from the expected rerravg
significantly. When n' = 6, our Top-5 test accuracies on
MobileNetV1 and MobileNetV2 models were enhanced up
to 88.26% and 88.85%, respectively. In this case, the accuracy
drops were uncritical compared with mitchell1 and drum(6).
Therefore, we concluded that the MobileNet models required
more accurate multiplication to obtain test accuracies close to
the bfloat16 cases.

Except for the MobileNet models, the performance drops
were negligible in terms of Top-1 and Top-5 test accura-
cies. Notably, when evaluating the ResNet50 model, 0.13%
Top-5 accuracy was degraded compared with that using
bfloat16 multiplication. Besides, compared with the evalua-
tion results of mitchell1 and drum(6), which were significantly

F I G U R E 5   Inference accuracies according to fraction bits in the second stage n'

KIM 691

degraded on InceptionV4 and DenseNet121 models, the pro-
posed design did not show considerable performance deg-
radation. These performance comparisons revealed that the
proposed design could well-compensate for errors on CNN
inferences.

Figure 5 illustrates Top-1 and Top-5 accuracies with
ResNet50, [32] MobileNetV2, [35] and DenseNet121
[37] models by sweeping n'. Notably, there was no differ-
ence in accuracy between the cases of n' = 0 and n' = 1.
As mentioned before, because the second stage cannot
compensate for the error from the first stage with n' = 1,
the accuracy was not enhanced when n’ = 1. On ResNet50
and DenseNet121 models, when n' ≥ 4, there were no sig-
nificant test accuracy drops (under 0.2%). However, as
n' decreased, we concluded that the degraded rerr of the
proposed design had adverse effects on the inference per-
formance. Meanwhile, the test accuracy of MobileNetV2
was significantly affected depending on n'. When n' = 1,
Top-1 and Top-5 test accuracies were only 33.90% and
59.19%, respectively. These results showed that the
layer structure of MobileNetV2 could be vulnerable to
the degree of multiplication approximation. For obtain-
ing better test accuracy on the MobileNetV2 model, we
concluded that the design with n' > 4 could be valid in
terms of hardware costs and test accuracy. For exam-
ple, the proposed design with n' = 5 can reduce the total
power consumption of the multiplier by 30% and achieve
89.68% Top-5 test accuracy on the MobileNetV2 model,
where the accuracy drop was under 2%, compared with
that of the bfloat16 case. Overall, we concluded that low
rerrworst and rerravg of the proposed compensated approx-
imate multiplication could provide low-power solutions
on the inference accuracies for the conventional pre-
trained CNN models.

5  |   CONCLUSION

The proposed approximate multiplier can have good error
distribution with reduced hardware costs. The proposed de-
sign adopts different types of multipliers in two stages, so
that our proposed method overcomes the drawbacks of exist-
ing designs for the bfloat16 data processing in terms of hard-
ware costs. Based on the error and cost analysis, our design
can provide better choices using the approximate multiplica-
tion. Above all, based on the experiment results from various
CNN inferences, we concluded that the proposed approxi-
mate multiplier can be useful in CNN inferences, allowing
affordable error.

ORCID
HyunJin Kim https://orcid.org/0000-0001-5017-3995

REFERENCES
	 1.	 J. N. Mitchell, Computer multiplication and division using bi-

nary logarithms, IRE Trans. Electr. Comput. EC-11 (1962), no. 4,
512–517.

	 2.	 D. J. McLaren, Improved Mitchell-based logarithmic multiplier for
low-power dsp applications, in Proc. IEEE Int. [Systems-on-Chip]
SOC Conf. (Portland, OR, USA), Sept. 2003, pp. 53–56.

	 3.	 J. M. Jou, S. R. Kuang, and R. Der Chen, Design of low-error
fixed-width multipliers for DSP applications, IEEE Trans.
Circuits Syst. II Analog Digit. Signal Process. 46 (1999), no. 6,
836–842.

	 4.	 L.-D. Van, S.-S. Wang, and W.-S. Feng, Design of the lower
error fixed-width multiplier and its application, IEEE Trans.
Circuits Syst. II Analog Digit. Signal Process. 47 (2000), no. 10,
1112–1118.

	 5.	 S. J. Jon and H. H. Wang, Fixed-width multiplier for DSP appli-
cation, in Proc. Int. Conf. Comput. Des. (Austin, TX, USA), Sept.
2000, pp. 318–322.

	 6.	 K.-J. Cho et al., Design of low-error fixed-width modified booth
multiplier, IEEE Trans Very Large Scale Integr. VLSI Syst. 12
(2004), no. 5, 522–531.

	 7.	 S. S. Bhusare and V. S. Kanchana Bhaaskaran, Fixed-width mul-
tiplier with simple compensation bias, Procedia Mater. Sci. 10
(2015), 395–402.

	 8.	 Z. Babić, A. Avramović, and P. Bulić, An itera-tive logarithmic
multiplier, Microprocess. Microsyst. 35 (2011), no. 1, 23–33.

	 9.	 P. Kulkarni, P. Gupta, and M. D. Ercegovac, Trading accuracy
for power in a multiplier architecture, J. Low Power Electron. 7
(2011), no. 4, 490–501.

	10.	 M. B. Sullivan and E. E. Swartzlander, Truncated error correction
for flexible approximate multiplication, in Proc. Asilomar Conf.
Signals, Syst. Comput. (ASILOMAR) (Pacific Grove, CA, USA),
Nov. 2012, pp. 355–359.

	11.	 S. Hashemi, R. Bahar, and S. Reda, DRUM: A dynamic range unbi-
ased multiplier for approximate applications, in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Des. (Austin, TX, USA), Nov. 2015, pp.
418–425.

	12.	 H. Jiang et al., Approxi-mate radix-8 booth multipliers for low-
power and high-performance operation, IEEE Trans. Comput. 65
(2016), no. 8, 2638–2644.

	13.	 S. E. Ahmed, S. Kadam, and M. B. Srinivas, An iterative loga-
rithmic multiplier with improved precision, IEEE Symp. Comput.
Arithmetic (ARITH), (Silicon Valley, CA, USA), July 2016, pp.
104–111.

	14.	 R. Zendegani et al., RoBA multiplier: A rounding-based approx-
imate multiplier for high-speed yet energy-efficient digital signal
processing, IEEE Trans. Very Large Scale Integr. VLSI Syst. 25
(2017), no. 2, 393–401.

	15.	 V. Mrazek et al., Evoapprox8b: Library of approximate adders and
multipliers for circuit design and benchmarking of approximation
methods, in Proc. Des., Autom. Test (Lausanne, Switzerland), Mar.
2017, pp. 258–261.

	16.	 W. Liu et al., Design of approximate logarithmic multipliers, in
Proc. Great Lakes Symp. VLSI, (Banff, Canada), May 2017, pp.
47–52.

	17.	 M. S. Kim et al., Low-power implementation of Mitchell’s approxi-
mate logarithmic multiplication for convolutional neural networks,
in Proc. Asia S. Pac. Des. Autom. Conf. (ASP-DAC), (Jeju, Rep. of
Korea), Jan. 2018, pp. 617–622.

KIM692

https://orcid.org/0000-0001-5017-3995
https://orcid.org/0000-0001-5017-3995

	18.	 I. Alouani et al., A novel heterogeneous approximate multiplier
for low power and high performance, IEEE Embed. Syst. Lett. 10
(2018), no. 2, 45–48.

	19.	 S. Ullah, S. S. Murthy, and A. Kumar, Smapproxlib: Library of FPGA-
based approximate multipliers, in Proc. ACM/ESDA/IEEE Des.
Autom. Conf. (DAC), (San Francisco, CA, USA), June 2018, pp. 1–6.

	20.	 P. Yin et al., Design of dynamic range approximate logarithmic
multipliers, in Proc. Great Lakes Symp. VLSI, (Chicago, IL, USA),
May 2018, pp. 423–426.

	21.	 M. S. Kim et al, Efficient Mitchell’s approximate log multipliers for
convolutional neural networks, IEEE Trans. Comput. 68 (2018),
no. 5, 660–675.

	22.	 H. J. Kim et al., A cost–efficient iterative truncated logarithmic
multiplication for convolutional neural networks, in Proc. IEEE
Symp. Comput. Arithmetic (ARITH), (Kyoto, Japan), June 2019,
pp. 108–111.

	23.	 Z. Babic, A. Avramovic, and P. Bulic, An iterative Mitchell’s algo-
rithm based multiplier, in Proc. IEEE Int. Symp. Signal Process.
Inform. Technol. (Sarajevo, Bosnia and Herzegovina), Dec. 2008,
pp. 303–308.

	24.	 N. Burgess et al., Bfloat16 processing for neural networks, in Proc.
IEEE Symp. Comput. Arithmetic (ARITH), (Kyoto, Japan), June
2019, pp. 88–91.

	25.	 D. Lutz, Arm floating point 2019: Latency, area, power, in Proc.
IEEE Symp. Comput. Arithmetic (ARITH), (Kyoto, Japan), June
2019, pp. 97–98.

	26.	 D. Kalamkar et al., A study of bfloat16 for deep learning training,
arXiv preprint, CoRR, 2019, arXiv: 1905.12322.

	27.	 K. H. Abed and R. E. Siferd, CMOS VLSI implementation of a low-
power logarithmic converter, IEEE Trans. Comput. 52 (2003), no.
11, 1421–1433.

	28.	 Y. Jia et al., Caffe: Convolutional architecture for fast feature em-
bedding, in Proc. ACM Int. Conf. Multimed. (Orlando, FL, USA),
Nov. 2014, pp. 675–678.

	29.	 A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classifi-
cation with deep convolutional neural networks, in Proc. Int. Conf.
Neural Inform. Process. Syst. (Red Hook, NY, USA), Dec. 2012,
pp. 1097–1105.

	30.	 K. Chatfield et al., Return of the devil in the details: Delving
deep into convolutional nets, arXiv preprint, CoRR, 2014, arXiv:
1405.3531.

	31.	 C. Szegedy et al., Going deeper with convolutions, in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (Boston, MA, USA), June 2015,
pp. 1–9.

	32.	 K. He et al., Deep residual learning for image recognition, in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (Las Vegas, NV,
USA), June 2016, pp. 770–778.

	33.	 C. Szegedy et al., Inception-v4, inception-resnet and the impact
of residual connections on learning, arXiv preprint, CoRR, 2016,
arXiv: 1602.07261.

	34.	 A. G. Howard et al., Mobilenets: Efficient convolutional neural
networks for mobile vision applications, arXiv preprint, CoRR,
2017, arXiv: 1704.04861.

	35.	 M. Sandler et al., Mobilenetv2: Inverted residuals and linear bot-
tlenecks, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (Salt
Lake City, UT, USA), June 2018, pp. 4510–4520.

	36.	 J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation networks, in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (Salt Lake City,
UT, USA), June 2018, pp. 7132–7141.

	37.	 G. Huang, et al., Convolutional networks with dense connectivity,
IEEE Trans. Pattern Anal. Mach. Intell. (2019), 1.

	38.	 O. Russakovsky, et al., Imagenet large scale visual recogni-
tion challenge, Int. J. Comput. Vis. (IJCV) 115 (2015), no. 3,
211–252.

AUTHOR BIOGRAPHY

 HyunJin Kim received a Ph.D in
Electrical and Electronic Engineer
ing, a master degree and a bachelor
degree in Electrical Engineering, all
from Yonsei University, Republic of
Korea. He worked as a mixed-signal

VLSI circuit designer at Samsung Electromechanics
(2002–2005), and as a senior engineer in a flash memory
controller project at Samsung Electronics (2010–2011).
He is currently an associate professor in the School of
Electronics and Electrical Engineering of Dankook
University, Republic of Korea. His current research inter-
ests reside in the realm of approximate computing based
on the arithmetic solution for deep neural network imple-
mentation, string matching algorithm development, em-
bedded & parallel system, and system-on-chip (SoC)
design.

KIM 693

