• 제목/요약/키워드: convolution integral

검색결과 160건 처리시간 0.032초

CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ON A BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.73-93
    • /
    • 2004
  • In [10], Chang and Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we define the conditional generalized Fourier-Feynman transform and conditional generalized convolution product on function space. We then establish some relationships between the conditional generalized Fourier-Feynman transform and conditional generalized convolution product for functionals on function space that belonging to a Banach algebra.

PARTS FORMULAS INVOLVING CONDITIONAL INTEGRAL TRANSFORMS ON FUNCTION SPACE

  • Kim, Bong Jin;Kim, Byoung Soo
    • Korean Journal of Mathematics
    • /
    • 제22권1호
    • /
    • pp.57-69
    • /
    • 2014
  • We obtain a formula for the conditional Wiener integral of the first variation of functionals and establish several integration by parts formulas of conditional Wiener integrals of functionals on a function space. We then apply these results to obtain various integration by parts formulas involving conditional integral transforms and conditional convolution products on the function space.

GENERALIZED CONDITIONAL INTEGRAL TRANSFORMS, CONDITIONAL CONVOLUTIONS AND FIRST VARIATIONS

  • Kim, Bong Jin;Kim, Byoung Soo
    • Korean Journal of Mathematics
    • /
    • 제20권1호
    • /
    • pp.1-18
    • /
    • 2012
  • We study various relationships that exist among generalized conditional integral transform, generalized conditional convolution and generalized first variation for a class of functionals defined on K[0, T], the space of complex-valued continuous functions on [0, T] which vanish at zero.

SUBORDINATION RESULTS FOR CERTAIN SUBCLASSES BY USING INTEGRAL OPERATOR DEFINED IN THE SPACE OF ANALYTIC FUNCTIONS

  • Sakar, F. Muge;Guney, H. Ozlem
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.315-323
    • /
    • 2018
  • In this study, firstly we introduce generalized differential and integral operator, also using integral operator two classes are presented. Furthermore, some subordination results involving the Hadamard product (Convolution) for these subclasses of analytic function are proved. A number of consequences of some of these subordination results are also discussed.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT OVER WIENER PATHS IN ABSTRACT WIENER SPACE: AN Lp THEORY

  • Cho, Dong-Hyun
    • 대한수학회지
    • /
    • 제41권2호
    • /
    • pp.265-294
    • /
    • 2004
  • In this paper, using a simple formula, we evaluate the conditional Fourier-Feynman transforms and the conditional convolution products of cylinder type functions, and show that the conditional Fourier-Feynman transform of the conditional convolution product is expressed as a product of the conditional Fourier-Feynman transforms. Also, we evaluate the conditional Fourier-Feynman transforms of the functions of the forms exp {$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}$\Phi$($\chi$(T)), exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}$\Phi$($\chi$(T)) which are of interest in Feynman integration theories and quantum mechanics.

GENERATING OPERATORS OF I-TRANSFORM OF THE MELLIN CONVOLUTION TYPE

  • ALTAF AHMAD BHAT;JAVID AHMAD GANIE;MOHAMMAD YOUNUS BHAT;FAIZA BAIT ALI SULEIMAN
    • Journal of applied mathematics & informatics
    • /
    • 제42권1호
    • /
    • pp.65-76
    • /
    • 2024
  • In this paper, the I-transform of the Mellin convolution type is presented. Based on the Mellin transform theory, a general integral transform of the Mellin convolution type is introduced. The generating operators for I-transform together with the corresponding operational relations are also presented.

SOME CLASSES OF INTEGRAL EQUATIONS OF CONVOLUTIONS-PAIR GENERATED BY THE KONTOROVICH-LEBEDEV, LAPLACE AND FOURIER TRANSFORMS

  • Tuan, Trinh
    • 대한수학회논문집
    • /
    • 제36권3호
    • /
    • pp.485-494
    • /
    • 2021
  • In this article, we prove the existence of a solution to some classes of integral equations of generalized convolution type generated by the Kontorovich-Lebedev (K) transform, the Laplace (𝓛) transform and the Fourier (F) transform in some appropriate function spaces and represent it in a closed form.

SHIFTING AND MODULATION FOR THE CONVOLUTION PRODUCT OF FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Kim, Byoung Soo;Park, Yeon Hee
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.387-403
    • /
    • 2018
  • Shifting, scaling and modulation proprerties for the convolution product of the Fourier-Feynman transform of functionals in a generalized Fresnel class ${\mathcal{F}}_{A1,A2}$ are given. These properties help us to obtain convolution product of new functionals from the convolution product of old functionals which we know their convolution product.

시간적분형 운동방정식을 바탕으로 한 동적 응력확대계수의 계산 (Numerical Computation of Dynamic Stress Intensity Factors Based on the Equations of Motion in Convolution Integral)

  • 심우진;이성희
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.904-913
    • /
    • 2002
  • In this paper, the dynamic stress intensity factors of fracture mechanics are numerically computed in time domain using the FEM. For which the finite element formulations are derived applying the Galerkin method to the equations of motion in convolution integral as has been presented in the previous paper. To assure the strain fields of r$^{-1}$ 2/ singularity near the crack tip, the triangular quarter-point singular elements are imbedded in the finite element mesh discretized by the isoparametric quadratic quadrilateral elements. Two-dimensional problems of the elastodynamic fracture mechanics under the impact load are solved and compared with the existing numerical and analytical solutions, being shown that numerical results of good accuracy are obtained by the presented method.