• Title/Summary/Keyword: converters

Search Result 1,812, Processing Time 0.032 seconds

A Study of the Exclusive Embedded A/D Converter Using the Microprocessor and the Noise Decrease for the Magnetic Camera (마이크로프로세서를 이용한 자기카메라 전용 임베디드형 AD 변환기 및 잡음 감소에 관한 연구)

  • Lee, Jin-Yi;Hwang, Ji-Seong;Song, Ha-Ryong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.99-107
    • /
    • 2006
  • Magnetic nondestructive testing is very useful far detecting a crack on the surface or near of the surface of the ferromagnetic materials. The distribution of the magnetic flux leakage (DMFL) on a specimen has to be obtained quantitatively to evaluate the crack. The magnetic camera is proposed to obtain the DMFL at the large lift-off. The magnetic camera consists of a magnetic source, magnetic lens, analog to digital converters (ADCs), interface, and computer. The magnetic leakage fields or the distorted magnetic fields from the object, which are concentrated on the magnetic lens, are converted to analog electrical signals tv arrayed small magnetic sensors. These analog signals are converted to digital signals by the ADCs, and are stored, imaged, and processed by the interface and computer. However the magnetic camera has limitations with respect to converting and switching speed, full range and resolution, direct memory access (DMA), temporary storage speed and volume because common ADCs were used. Improved techniques, such as those that introduce the operational amplifier (OP-Amp), amplify the signal, reduce the connection line, and use the low pass filter (LPF) to increase the signal to noise ratio are necessary. This paper proposes the exclusive embedded ADC including OP-Amp, LPF, microprocessor and DMA circuit for the magnetic camera to satisfy the conditions mentioned above.

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • Lee, Jae-Won;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF

A Load Emulator for Low-power Embedded Systems and Its Application (저전력 내장형 시스템을 위한 부하의 전력 소모 에뮬레이션 시스템과 응용)

  • Kim, Kwan-Ho;Chang, Nae-Hyuck
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.37-48
    • /
    • 2005
  • The efficiency of power supply circuits such as DC-DC converters and batteries varies on the trend of the power consumption because their efficiencies are not fixed. To analyze the efficiency of power supply circuits, we need the temporal behavior of the power consumption of the loads, which is dependent on the activity factors of the devices during the operation. Since it is not easy to model every detail of those factors, one of the most accurate power consumption analyses of power supply circuits is measurement of a real system, which is expensive and time consuming. In this paper, we introduce an active load emulator for embedded systems which is capable of power measurement, logging, replaying and synthesis. We adopt a pattern recognition technique for data compression in that long-term behaviors of power consumption consist of numbers of repetitions of short-term behaviors, and the number of short-term behaviors is generally limited to a small number. We also devise a heterogeneous structure of active load elements so that low-speed, high-current active load elements and high-speed, low-current active load elements may emulate large amount and fast changing power consumption of digital systems. For the performance evaluation of our load emulator, we demonstrate power measurement and emulation of a hard drive. As an application of our load emulator, it is used for the analysis of a DC-DC converter efficiency and for the verification of a low-power frequency scaling policy for a real-time task.

The Remote Control of a Flyback Converter using an Inexpensive Microcontroller (저가형 마이크로 콘트롤러를 이용한 Flyback 컨버터의 원격제어)

  • 김윤서;양오
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.67-74
    • /
    • 2004
  • Differently from an existing analog control, because the digital control includes microprocessor basically, the digital control is enable to monitor internal parameters of DC-DC converter and to control output voltage remotely by communicating with a Windows based PC. These things are impossible in an analog control and there are more advantages in a digital control than an analog control. In this paper, with the advantages mentioned above, the feasibility of digital controlled DC-DC converter in low price is proposed. In order to implement these functions, it is used the inexpensive H8/3672 made by Renesas that has built in AD converters and PWM logic generators. The proposed digital controller is applied to a flyback converter that is designed to output DC 5[V] from DC 20∼30[V] and is remotely controlled to make variable outputs from DC 0[V] to 5[V] above in PC. The PWM controller adopts the PD controller in PID. In the last, the response characteristics of a step reference voltage and in a steady state are experimented to verify the feasibility and the usefulness of the proposed flyback converter that is implemented inexpensively.

Design of logic process based 256-bit EEPROM IP for RFID Tag Chips and Its Measurements (RFID 태그 칩용 로직 공정 기반 256bit EEPROM IP 설계 및 측정)

  • Kim, Kwang-Il;Jin, Li-Yan;Jeon, Hwang-Gon;Kim, Ki-Jong;Lee, Jae-Hyung;Kim, Tae-Hoon;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1868-1876
    • /
    • 2010
  • In this paper, we design a 256-bit EEPROM IP using only logic process-based devices. We propose EEPROM core circuits, a control gate (CG) and a tunnel gate (TG) driving circuit, to limit the voltages between the devices within 5.5V; and we propose DC-DC converters : VPP (=+4.75V), VNN (-4.75V), and VNNL (=VNN/3) generation circuit. In addition, we propose switching powers, CG_HV, CG_LV, TG_HV, TG_LV, VNNL_CG, VNNL_TG switching circuit, to be supplied for the CG and TG driving circuit. Simulation results under the typical simulation condition show that the power consumptions in the read, erase, and program mode are $12.86{\mu}W$, $22.52{\mu}W$, and $22.58{\mu}W$ respectively. Furthermore, the manufactured test chip operated normally and generated its target voltages of VPP, VNN, and VNNL as 4.69V, -4.74V, and -1.89V.

Hybrid Buffer Structured Optical Packet Switch with the Limited Numbers of Tunable Wavelength Converters and Internal Wavelengths (제한된 수의 튜닝 가능한 파장변환기와 내부파장을 갖는 하이브리드 버퍼 구조의 광 패킷 스위치)

  • Lim, Huhn-Kuk
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.171-177
    • /
    • 2009
  • Optical packet switching(OPS) is a strong candidate for the next-generation internet, since it has a fine switching granularity at the packet level for providing flexible bandwidth, and provides seamless integration between WDM layer and IP layer. Optical packet switching have been studied in two categories: OPS in synchronous and OPS in asynchronous networks. In this article we are focused on contention resolution of OPS in asynchronous networks. The hybrid buffer have been addressed, to reduce packet loss further as one of the alternative buffer structures for contention resolution of asynchronous and variable length packets, which consists of the FDL buffer and the electronic buffer. The OPS design issue for the limited number of TWCs and internal wavelengths is important in the aspect of switch cost and resource efficiency. Therefore, an hybrid buffer structured optical packet switch and its scheduling algorithm is presented for considering the limited number of TWCs and internal wavelengths, for contention resolution of asynchronous and variable length packets. The proposed algorithm could lead to the packet loss improvement compared to the legacy LAUC-VF algorithm with only the FDL buffer.

  • PDF

Operational Reliability Improvement of Power Converter by Improving the Inrush Current Limiter (돌입전류 제한회로 개선을 통한 전원변환장치 운용신뢰성 향상)

  • Yoon, Jae-Bok;Ryu, Seo-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.719-724
    • /
    • 2016
  • This paper describes the performance improvement of an inrush current limiter to prevent damage or malfunctions in power converters due to the inrush current. When the power converter of military radar is operated, the circuit breaker of the power converter is often activated because the overcurrent flows through the circuit breaker of the power converter. Therefore, this study performed a cause analysis of the problem, which is a larger current flow than the intended current(250A). The operation principle of an inrush current limiter and SCR (Silicon Controlled Rectifier) used in the inrush current limiter was analyzed. As a result, the overcurrent flow through the circuit breaker was found to be due to dv/dt triggering of SCR. Based on cause analysis, this paper proposes a technique by adding the resistor in front of the SCR to prevent an unnecessary inrush current. Finally, the effectiveness of the improvement was verified by measuring the output current in the inrush current limiter. The power converter equipped with the improved inrush current limiter operated for more than 1 year without the circuit breaker of the power converter being activated.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(불규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.253-262
    • /
    • 2018
  • Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain high-velocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a three-dimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.

Numerical Reproducibility of Wave Response for an Oscillating Wave Surge Converter Using Inverted Triangle Flap (역삼각형 플랩을 이용한 진자형 파력발전장치의 파랑응답에 대한 수치적 재현 가능성)

  • Kim, Tag-Gyeom;Kim, Do-Sam;Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.203-216
    • /
    • 2021
  • Analyzing various wave interactions with oscillating wave surge converters (OWSC) is essential because they must be operated efficiently under a wide range of wave conditions and designed to extract optimal wave energy. In the conceptual design and development stage of OWSC, numerical analysis can be a good alternative as a design tool. This study performed a numerical analysis on the behavioral characteristics of the inverted triangle flap against the incident waves using open source CFD to examine the essential behavioral attributes of OWSC. Specifically, the behavioral characteristics of the structure were studied by calculating the free water surface displacement and the flap rotation angle near the inverted triangular flap according to the change of the period under the regular wave conditions. By comparing and examining the numerical analysis results with the hydraulic model experiments, the validity of the analysis performed and the applicability in analyzing the wave-structure interactions related to OWSC was verified. The numerical analysis result confirmed that the hydrodynamic behavior characteristic due to the interactions of the wave and the inverted triangle flap was well reproduced.

A Conversion Protocol for 2W Telephone Signal over Ethernet in a Private PSTN (사설 PSTN에서 2W 전화 신호의 이더넷 변환 프로토콜)

  • Shin, JinBeom;Cho, KilSeok;Lee, DongGwan;Kim, TaeHyon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.645-654
    • /
    • 2021
  • In this paper, we proposed a protocol to convert 2W telephone analog signals to Ethernet data in a private PSTN 2W tactical voice system. There are several kinds of operational problems in the tactical telephone network where 2W telephone copper lines are installed hundreds of meters away from the PBX in a headquarter site. The reason is that it is difficult to install and maintain the 2W telephone copper cable in severe operational fields and to meet safety and stability operational requirements of the telephone line under lighting and electromagnetic environments. In order to solve these challenging demands, we proposed an efficient method that the 2W analog interface signals between a private PBX system and a 2W telephone is converted to Ethernet messages using the optical Ethernet data communication network already deployed in the tactical weapon system. Thus, it is not necessary to install an additional optic cable for the ethernet telephone line and to maintain the private PSTN 2W telephone network. Also it provides safe and secure telecommunication operation under lightning and electromagnetic environments. This paper presents the conversion protocol from 2W telephone signals over Ethernet interface between PBX systems and 2W telephones, the mutual exchange protocol of ethernet messages between two converters, and the rule to process analog signal interface. Finally, we demonstrate that the proposed technique can provide a feasible solution in the tactical weapon system by analyzing its performance and experimental results such as the bandwidth of 2W telephone ethernet network and the transmission latency of voice signal, and the stability of optic ethernet voice network along with the ethernet data network.