DOI QR코드

DOI QR Code

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves)

해수소통구를 구비한 진동수주형 파력발전구조물 내 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(불규칙파의 경우)

  • Lee, Kwang Ho (Dept. of Energy Plant Eng., Catholic Kwandong University) ;
  • Lee, Jun Hyeong (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • Jeong, Ik Han (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • Kim, Do Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.)
  • 이광호 (가톨릭관동대학교 에너지플랜트공학과) ;
  • 이준형 (한국해양대학교 대학원 토목환경공학과) ;
  • 정익한 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 건설공학과)
  • Received : 2018.11.27
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain high-velocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a three-dimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.

진동수주형(OWC) 파력발전구조물(WEC)은 진동수주실 내의 수위진동에 의해 발생된 공기흐름을 Power-Take-Off (PTO) 시스템을 통해 전기에너지로 회수하는 시스템이다. 일반적으로 PTO 시스템에서 높은 공기유속을 획득하기 위해서는 해수에 비해 상대적으로 적은 단면적을 갖는 공기실이 요구되므로 정확한 공기유속을 모의하기 위해서는 3차원적인 해석이 요구된다. 본 연구에서는 불규칙파동장을 대상으로 해수소통구를 구비한 진동수주형 파력발전구조물의 동적응답을 수치해석적으로 검토하였다. 수치해석에는 오픈소스 기반의 OpenFOAM 및 FOAM 확장 커뮤니티를 위한 파동장 해석을 위해 개발된 OLAFLOW를 적용하였다. 선행연구와 동일한 형상의 해수소통구와 OWC-WEC에 불규칙파랑이 입사한 경우 공기실 내에서 3차원공기흐름과 구조물 주변에서 파랑변형 및 해수소통구 내에서 3차원해수흐름 등에 관한 변동특성을 논의하였다. 이로부터 유의파에 대한 Ursell 수가 클수록 공기실 내 최대 공기흐름속도가 증가하며, 공기실 내부에서 외부로 유출되는 공기속도가 외부에서 공기실 내부로 유입되는 공기속도보다 더 크다는 사실을 알 수 있었다.

Keywords

References

  1. Boccotti, P. (2007a). Comparison between a U-OWC and a conventional OWC. Ocean Engineering, 34, 799-805. https://doi.org/10.1016/j.oceaneng.2006.04.005
  2. Boccotti, P. (2007b). Caisson breakwaters embodying an OWC with a small opening-Part I : Theory. Ocean Engineering, 34, 806-819. https://doi.org/10.1016/j.oceaneng.2006.04.006
  3. Delaure, Y.M.C. and Lewis, A. (2003). 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, 30, 309-330. https://doi.org/10.1016/S0029-8018(02)00032-X
  4. Falcão, A.F. de O. (2002). Control of an oscillating-water-column wave power plant for maximum energy production. Applied Ocean Research, 24, 73-82. https://doi.org/10.1016/S0141-1187(02)00021-4
  5. Falcao, A.F. de O. and Justino, P.A.P. (1999). OWC wave energy devices with air flow control. Ocean Engineering, 26, 1275-1295. https://doi.org/10.1016/S0029-8018(98)00075-4
  6. Falcao, A.F. de O. and Rodrigues, R.J.A. (2002). Stochastic modelling of OWC wave power plant performance. Applied Ocean Research, 24, 59-71. https://doi.org/10.1016/S0141-1187(02)00022-6
  7. Gervelas, R., Trarieux, F. and Patel, M. (2011). A time-domain simulator for an oscillating water column in irregular waves at model scale. Ocean Engineering, 38, 1-7. https://doi.org/10.1016/j.oceaneng.2010.10.016
  8. Goda, Y. (1988). Statistical variability of sea state parameters as a function of wave spectrum. Coastal Engineering in Japan, JSCE, 31(1), 39-52. https://doi.org/10.1080/05785634.1988.11924482
  9. Goda, Y. (2000). Random seas and design of maritime structures. World Scientific Publishing, Singapore.
  10. Goda, Y. and Suzuki, Y. (1976). Estimation of incident and reflected waves in random wave experiments. ICCE-1976, ASCE, 828-845.
  11. Gouaud, F., Rey, V., Piazzola, J. and Van Hooff, R. (2010). Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound. Coastal Engineering, 57, 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003
  12. Higuera, P., Liu, P.L.F., Lin, C., Wong, W.Y. and Kao, M.J. (2018). Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope. Journal of Fluid Mechanics, 847, 186-227. https://doi.org/10.1017/jfm.2018.321
  13. Iturrioz, A., Guanche, R., Lara, J.L., Vidal, C. and Losada, I.J. (2015). Validation of OpenFOAM(R) for oscillating water column three-dimensional modeling, Ocean Engineering, 107, 222-236. https://doi.org/10.1016/j.oceaneng.2015.07.051
  14. Kissling, K., Springer, J., Jasak, H., Schutz, S., Urban, K. and Piesche, M. (2010). A coupled pressure based solution algorithm based on the volume-of-fluid approach for two or more immiscible fluids. European Conference on Computational Fluid Dynamics, ECCOMAS CFD.
  15. Koo, W. and Kim, M.H. (2012). A time-domain simulation of an oscillating water column with irregular waves. Ocean Systems Engineering, 2(2), 147-158. https://doi.org/10.12989/ose.2012.2.2.147
  16. Lee, K.H., Park, J.H. and Kim, D.S. (2012). Numerical simulation of irregular airflow within wave power converter using OWC by action of 3-dimensional irregular waves. Journal of Korean Society of Coastal and Ocean Engineers, 24(3), 189-202 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.3.189
  17. Lee, K.H., Lee, J.H., Jeong, I.H. and Kim, D.S. (2018). 3-Dimensional numerical analysis of air flow inside OWC type WEC equipped with channel of seawater exchange and wave characteristics around its structure (in case of regular waves). Journal of Korean Society of Coastal and Ocean Engineers, 30(6), 242-252 (in Korean). https://doi.org/10.9765/KSCOE.2018.30.6.242
  18. Smagorinsky, J. (1963). General circulation experiment with the primitive equations. Mon, Weath. Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  19. Yin, Z., Shi, H. and Cao, X. (2010). Numerical simulation of water and air flow in oscillating water column air chamber. Proceedings of 20th International Offshore and Polar Engineering Conference, ISOPE, 796-801.