DOI QR코드

DOI QR Code

Numerical Reproducibility of Wave Response for an Oscillating Wave Surge Converter Using Inverted Triangle Flap

역삼각형 플랩을 이용한 진자형 파력발전장치의 파랑응답에 대한 수치적 재현 가능성

  • Kim, Tag-Gyeom (SEIL ENGINEERING CO., LTD. Port & Coastal Development Institute) ;
  • Kim, Do-Sam (Dept. of Civil Engineering, Korea Maritime and Ocean University) ;
  • Cho, Yong-Hwan (Dept. of Civil Eng., Nagoya University) ;
  • Lee, Kwang-Ho (Dept. of Civil Engineering, Korea Maritime and Ocean University)
  • 김탁겸 ((주)세일종합기술공사 기술연구소) ;
  • 김도삼 (한국해양대학교 물류.환경.도시인프라공학부 건설공학전공) ;
  • 조용환 (일본나고야대학교 토목공학과) ;
  • 이광호 (한국해양대학교 물류.환경.도시인프라공학부 건설공학전공)
  • Received : 2021.10.06
  • Accepted : 2021.10.23
  • Published : 2021.10.31

Abstract

Analyzing various wave interactions with oscillating wave surge converters (OWSC) is essential because they must be operated efficiently under a wide range of wave conditions and designed to extract optimal wave energy. In the conceptual design and development stage of OWSC, numerical analysis can be a good alternative as a design tool. This study performed a numerical analysis on the behavioral characteristics of the inverted triangle flap against the incident waves using open source CFD to examine the essential behavioral attributes of OWSC. Specifically, the behavioral characteristics of the structure were studied by calculating the free water surface displacement and the flap rotation angle near the inverted triangular flap according to the change of the period under the regular wave conditions. By comparing and examining the numerical analysis results with the hydraulic model experiments, the validity of the analysis performed and the applicability in analyzing the wave-structure interactions related to OWSC was verified. The numerical analysis result confirmed that the hydrodynamic behavior characteristic due to the interactions of the wave and the inverted triangle flap was well reproduced.

진자형 파력발전장치(Oscillating Wave Surge Converter, OWSC)는 다양한 유형의 파랑 조건에서 효율적으로 작동해야하며 최적의 파랑에너지를 추출하도록 설계되어야 하기 때문에 OWSC의 거동과 관련된 복잡한 파랑-구조물 상호작용이 광범위한 조건에서 검토되어야 한다. OWSC의 개념 설계 및 개발단계에서 수치해석은 OWSC의 설계도구로써 좋은 대안이 될 수 있다. 본 연구에서는 기초적인 OWSC의 거동특성에 대한 검토를 목적으로 오픈소스 CFD를 이용하여 내습하는 파랑에 대한 역삼각형 플랩의 거동특성에 대한 수치해석을 수행하였다. 규칙파 내습시 주기의 변화에 따른 역삼각형 플랩 인근의 자유수면변위 및 회전각도(Flap Rotation angle)를 산정하여 구조물의 거동 특성에 대해 고찰하고, 그 결과를 수리실험과 비교·검토하여 해석성능의 타당성 및 OWSC의 관련 문제를 수치적으로 해석하기 위한 수치모델로서의 적용성능을 검증하였다. 수치해석결과는 파랑과 역삼각형 플랩의 상호작용에 의한 유체역학적 거동 특성을 양호하게 재현함을 확인하였다.

Keywords

References

  1. AEA. (2006). Review and analysis of ocean energy systems development and supporting policies. IEA's, Implementing Agreement on Ocean Energy Systems, 28th June.
  2. Barker, G., Vantorre, M., Banasiak, R., Beels, C. and De Rouck, J. (2007). Numerical modelling of wave energy absorption by a floating point absorber system. Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, Lisbon, Portugal, July 1-6.
  3. Bihs, H., Kamath, A., Alagan Chella, M., Aggarwal, A. and Arntsen, O.A. (2016). A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics. Computers & Fluids, 140, 191-208. https://doi.org/10.1016/j.compfluid.2016.09.012
  4. Bridgwater Court, J., Chandel, D., Sell, N., Plummer, A. and Hillis A. (2017). Modelling of Array Interactions for a Curved OWSC using OpenFOAM. in Proc, of the 12th European Wave and Tidal Energy Conference, Cork, Ireland.
  5. Benites-Munoz, D., Huang, L., Anderlini, E., Marin-Lopez, J.R. and Thomas, G. (2020). Hydrodynamic modelling of an oscillating wave surge converter including power take-off. Journal of Marine Science and Engineering, 8(10), 771. https://doi.org/10.3390/jmse8100771.
  6. Center for Applied Scientific Computing. (2006). HYPRE High Performance Preconditioners - User's Manual. Lawrence Livermore National Laboratory, Livermore, CA, USA.
  7. Cho, Y.-H., Nakamura, T., Mizutani, N. and Lee, K.-H.(2020). An experimental study of a bottom-hinged wave energy converter with a reflection wall in regular waves-focusing on behavioral characteristics. Applied Sciences, 10, 6734. https://doi.org/10.3390/app10196734
  8. Engineering Business Ltd., (2005). EB Frond wave energy converter - phase 2. DTI Report URN05/865.
  9. EPRI. (2005). Ocean tidal and wave energy. Renewable Energy Technical Assessment Guide-TAG-RE.
  10. Fadlun, E.A., Verzicco, R., Orlandi, P. and Mohd-Yusolf, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 161, 35-60. https://doi.org/10.1006/jcph.2000.6484
  11. Falnes, J. (2007). Review a review of wave-energy extraction. Marine Structures, 20, 185-201. https://doi.org/10.1016/j.marstruc.2007.09.001
  12. FEMP. (2009). Ocean energy technology overview. The U.S. Department of Energy, July DOE/GO-102009-2823.
  13. Flocard, F. and Finnigan T.D. (2009). Experimental investigation of power capture from pitching point absorbers. in Proc, of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden.
  14. Falcao, A.F.O. (2010). Wave energy utilization : A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899-918. https://doi.org/10.1016/j.rser.2009.11.003
  15. ISSC. (2006). Specialist committee V.4, ocean wind and wave energy utilization. 16th International Ship and Offshore Structures Congress, August 20th-25th, Southampton, UK, 2.
  16. Jiang, G. and Shu, C. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1), 202-228. https://doi.org/10.1006/jcph.1996.0130
  17. Jiang, G. and Peng, D. (2000). Weighted ENO schemes for Hamilton Jacobi equations. SIAM Journal of Scientific Computing, 21, 2126-2143. https://doi.org/10.1137/S106482759732455X
  18. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J. (2012). A wave generation toolbox for the open-source CFD library: OpenFOAM. International Journal for Numerical Methods in Fluids, 70, 1073-1088. https://doi.org/10.1002/fld.2726
  19. Lee, K.H., Kim, D.S., Yook, S.M., Jung, Y.H. and Jung, I.H. (2014). Dynamic response analysis of pressurized air chamber breakwater mounted wave-power generation system utilizing oscillating water column. Journal of Korean Society of Coastal and Ocean Engineers, 26(4), 225-243. https://doi.org/10.9765/KSCOE.2014.26.4.225
  20. Mottahedi, H.R., Anbarsooz, M. and Passandideh-Fard, M. (2018) Application of a fictitious domain method in numerical simulation of an oscillating wave surge converter. Renewable Energy, 121, 133-145. https://doi.org/10.1016/j.renene.2018.01.021
  21. Martin, T., Tsarau, A. and Bihs, H. (2020) A Numerical Framework for Modelling the Dynamics of Open Ocean Aquaculture Structures in Viscous Fluids, Applied Ocean Research, DOI: 10.1016/j.apor.2020.102410.
  22. Osher, S. and Sethian, J. (1988). Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulation. Journal of Computational Physics, 79, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  23. Powertech. (2009). Ocean energy: Global technology development status. IEA-OES Document T0104.
  24. Rafiee, A. and Dias, F. (2013). Two-dimensional and three-dimensional simulation of wave interaction with an oscillating wave surge converter. in Proc, of the International workshop on water waves and floating bodies (IWWWFB), Marseille.
  25. Shu, C. and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439-471. https://doi.org/10.1016/0021-9991(88)90177-5
  26. Sussman, M., Smereka, P. and Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114, 146-159. https://doi.org/10.1006/jcph.1994.1155
  27. Schaffer, H.A. and Klopman, G. (2000). Review of multidirectional active wave absorption methods. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126, 88-97. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:2(88)
  28. Shivarama, R. and Fahrenthold, E. (2004). Hamilton's equations with euler parameters for rigid body dynamics modeling. J. Dyn. Sys., Meas., Control 126, 124-130. https://doi.org/10.1115/1.1649977
  29. Schmitt, P. and Elsaesser, B. (2015). On the use of OpenFOAM to model oscillating wave surge converters. Ocean Engineering, 108, 98-104. https://doi.org/10.1016/j.oceaneng.2015.07.055
  30. Timmermans, L., Minev, P. and Van De Vosse, F. (1996). An approximate projection scheme for incompressible flow using spectral elements. International Journal for Numerical Methods in Fluid, 22, 673-688. https://doi.org/10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O
  31. Tan Loh, T., Greaves, D., Maki, T., Vuorinen, M., Simmonds, D. and Kyte, A. (2016). Numerical Modelling of the WaveRoller Device Using OpenFOAM®. in Proc, of the 3rd Asian Wave & Tidal Energy Conference (AWTEC), Singapore.
  32. Tan Loh, T. (2018) Assessments of Wave-Structure Interactions for an Oscillating Wave Surge Converter using CFD. PhD Thesis, University of Plymouth.
  33. Uhlmann, M. (2005). An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209, 448-476. https://doi.org/10.1016/j.jcp.2005.03.017
  34. van der Vorst, H. (1992). BiCGStab: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal of Scientific Computing, 13, 631-644. https://doi.org/10.1137/0913035
  35. Wei, Y., Abadie, T., Henry, A. and Dias, F. (2016). Wave interaction with an oscillating wave surge converter. Part II: Slamming. Ocean Engineering, 113, 319-334. https://doi.org/10.1016/j.oceaneng.2015.12.041
  36. Whittaker, T.J.T. and Folley, M. (2012). Nearshore oscillating wave surge converters and the development of Oyster. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370, 345-364. https://doi.org/10.1098/rsta.2011.0152
  37. Wilcox, D.C. (1994). Simulation of transition with a two-equation turbulence model. AIAA Journal, 32(2), 247-255. https://doi.org/10.2514/3.59994
  38. Yang, J. and Stern, F. (2015). A non-iterative direct forcing immersed boundary method for strongly-coupled fluid-solid interactions. Journal of Computational Physics, 295, 779-804. https://doi.org/10.1016/j.jcp.2015.04.040
  39. Yang, L. (2018). One-fluid formulation for fluid structure interaction with free surface. Comput. Methods Appl. Mech. Engrg., 332, 102-135. https://doi.org/10.1016/j.cma.2017.12.016