• Title/Summary/Keyword: convergence properties

Search Result 1,917, Processing Time 0.025 seconds

Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining (탄소나노튜브와 그래핀 강화 하이브리드 알루미나 복합재료의 재료특성 및 마이크로방전가공 성능)

  • Sung, Jin-Woo;Kim, Nam-Kyung;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.3-9
    • /
    • 2013
  • Aluminum Oxide($Al_2O_3$) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using conventional mechanical methods. Carbon fillers, such as carbon nanotubes(CNT) and graphene nanoplatelets(GNP)can be dispersed in a ceramic matrix to improve the mechanical and electrical properties. In this study, CNT and Graphene reinforced hybrid ceramic composites were fabricated using the spark plasma sintering method at a temperature of $1,500^{\circ}C$, pressure of 40 MPa, and soaking time of 10min. Besides this, the material properties such as microstructure, crystal structure, hardness, and electrical conductivity were analyzed using FE-SEM, XRD, Vickers, and the 4-point probe method. A micro machining test was carried out to compare the effects of the material properties and the machining performance for CNT and Graphene reinforced ceramic composites.

Influence of Nano-Cellulose Dispersant on the Vulcanization Characteristics, Viscoelastic Properties, and Mechanical Properties of Silica-SBR Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2020
  • Silica/SBR (styrene-butadiene rubber) compounds are the primary constituents of tire treads. Furthermore, the excellent dynamic viscoelastic properties of silica lead to good fuel efficiencies. However, the silanol group on the surface of silica does not mix well with non-polar rubber because of its polarity. This incompatibility causes aggregation due to the occurrence of hydrogen bonding between the hydroxyl groups, thereby reducing the dispersibility of silica. Recently, the wet master batch (WMB) process has been applied to overcome these disadvantages, and research on silica dispersants that can be used in the WMB process has been increasing. In this study, we prepared silica/SBR compounds by using three types of eco-friendly cellulose-based dispersants in the WMB process, namely: cellulose-, sodium carboxymethyl cellulose, and nanocellulose-based dispersants. Subsequently, we compared the vulcanization characteristics, viscoelastic properties, and mechanical properties of the compounds. The silica dispersibility in the rubber compounds was improved with the addition of the nano-cellulose dispersant, resulting in the enhancement of the workability, hardness, tensile strength, and wear resistance of the SBR compound.

Effect of Oxygen Plasma Treatment on the Surface and Tensile Properties of Stainless Steel Fibers (산소 플라즈마 처리가 스테인레스 스틸 섬유의 표면 및 인장특성에 미치는 영향)

  • Kwon, MiYeon;Lim, Dae Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2022
  • The physicochemical properties of stainless steel fibers which were modified by oxygen plasma treatment were analyzed through microscopy and XPS analysis. The wettability of the surface of the stainless steel fiber was observed by measuring water contact angle to find out the effect of the plasma treatment time on the surface characteristics of the stainless steel fiber. In addition, in order to understand the effect of oxygen plasma treatment on the deterioration of the stainless steel fiber properties, the physical properties due to plasma treatment was investigated by measuring the weight reduction, tensile strength, elongation, tensile modulus of the stainless steel fibers according to the treatment time. As a result, the stainless steel fiber surface was etched by the oxygen plasma and the surface became more wettable by the introduction of hydrophilic functional groups. However the physical properties of the stainless steel fiber were not significantly deteriorated even if the surface of the stainless steel fiber made hydrophilic.

An Analytical Study on the Simplification of the Shape of PS Tendon Through the Optimization of Material Properties (재료 물성 최적화를 통한 PS 강연선의 형상 단순화에 관한 해석적 연구)

  • Do-Yeon Kim;Il-Young Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.555-561
    • /
    • 2024
  • This paper derives material properties of steel bars that simulate the distribution of stress and strain of prestressed tendons used in Prestressed concrete(PSC) girders and presents an optimal material model. ABAQUS software was used to establish the 3D solid model of the PSC girder and strand wire rope for a PS(Prestressed) tendon. Then the model of steel wire rope was imported into the Isight interface plugin directly through the ABAQUS and the Data Matching. In ABAQUS, the contact pairs were established, the models were meshed, the constraints were applied to solve the finite element model and an axial tension of 0.5m/s was loaded to analyze the stress and deformation distributions in the normal working range of the PS strand wire rope. In Data Matching, classical experimental data is fitted to the optimal material properties through finite element analysis and multi-objective optimization. The results show that the steel bar with optimal material properties presents a similar linear area and stress distribution with the PS tendon.

Enhanced Block-Based Adaptive Loop Filter with Multiple Symmetric Structures for Video Coding

  • Lee, Ha-Hyun;Lim, Sung-Chang;Choi, Hae-Chul;Jeong, Se-Yoon;Kim, Jong-Ho;Choi, Jin-Soo
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.626-629
    • /
    • 2010
  • In this letter, we present an enhanced block-based adaptive loop filter (E-BALF) with multiple filter symmetric structures. The E-BALF adapts various filter symmetric structures in a rate-distortion optimization sense, reflecting the statistical properties of each image in a video sequence. Experimental results show that the proposed method achieves a reduction in the Bj${\phi}$ntegaard delta (BD)-bitrate by an average of 9.60% compared with Joint Model 11.0 of H.264/AVC. Compared to the state-of-the-art BALF, a reduction of up to 1.13% in BD-bitrate is achieved.

CONVERGENCE PROPERTIES FOR THE PARTIAL SUMS OF WIDELY ORTHANT DEPENDENT RANDOM VARIABLES UNDER SOME INTEGRABLE ASSUMPTIONS AND THEIR APPLICATIONS

  • He, Yongping;Wang, Xuejun;Yao, Chi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1451-1473
    • /
    • 2020
  • Widely orthant dependence (WOD, in short) is a special dependence structure. In this paper, by using the probability inequalities and moment inequalities for WOD random variables, we study the Lp convergence and complete convergence for the partial sums respectively under the conditions of RCI(α), SRCI(α) and R-h-integrability. We also give an application to nonparametric regression models based on WOD errors by using the Lp convergence that we obtained. Finally we carry out some simulations to verify the validity of our theoretical results.

Design of Web based Plasma Properties Reference Data Collection and Evaluation System (Web기반 Plasma 물성 참조데이터 수집평가 시스템 설계)

  • Park, Jun-Hyoung;Hwang, Sung-Ha;Jang, Won-Suk;Kwon, Duek-Chul;Song, Mi-Young;Yoon, Jung-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.1062-1065
    • /
    • 2010
  • Plasma 물성 데이터는 Plasma내에서 일어나는 입자(전자, 원자, 이온, 분자 등)들의 충돌에 대한 데이터로써 Plasma 발생 장치 설계 및 제어의 핵심 요소이며, Plasma 공정조건 확립을 위한 필수 정보가 된다. 참조표준은 과학기술데이터나 정보에 대하여 정확도와 신뢰도에 대한 분석 및 평가가 이루어진 공인데이터를 말한다. 이러한 플라즈마 물성 정보를 체계적으로 관리하고 신뢰성 있는 데이터를 필요로 하는 산업체에 지원하기 위하여 특정 참조표준과 참조데이터로 제정, 보급하는 Plasma 물성 참조표준 수집평가 시스템이 필요하고, 이에 대한 설계가 필요하다.

An improvement on the concrete exothermic models considering self-temperature duration

  • Zhu, Zhenyang;Chen, Weimin;Qiang, Sheng;Zhang, Guoxin;Liu, Youzhi
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.659-666
    • /
    • 2017
  • Based on the Arrhenius equations, several hydration exothermic models that precisely calculate the influence of concrete's self-temperature duration on its hydration exothermic rate have been presented. However, the models' convergence is difficult to achieve when applied to engineering projects, especially when the activation energy of the Arrhenius equation is precisely considered. Thus, the models' convergence performance should be improved. To solve this problem and apply the model to engineering projects, the relationship between fast iteration and proper expression forms of the adiabatic temperature rise, the coupling relationship between the pipe-cooling and hydration exothermic models, and the influence of concrete's self-temperature duration on its mechanical properties were studied. Based on these results, the rapid convergence of the hydration exothermic model and its coupling with pipe-cooling models were achieved. The calculation results for a particular engineering project show that the improved concrete hydration exothermic model and the corresponding mechanical model can be suitably applied to engineering projects.

Influence of Selenization Temperature on the Properties of Cu2ZnSnSe4 Thin Films (Selenization 온도가 Cu2ZnSnSe4 박막의 특성에 미치는 영향)

  • Yeo, Soo Jung;Gang, Myeng Gil;Moon, Jong-Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.97-100
    • /
    • 2015
  • The kesterite $Cu_2ZnSnSe_4$ (CZTSe) thin film solar cells were synthesized by selenization of sputtered Cu/Sn/Zn metallic precursors on Mo coated soda lime glass substrate in Ar atmosphere. Cu/Sn/Zn metallic precursors were deposited by DC magnetron sputtering process with 30 W power at room temperature. As-deposited metallic precursors were placed in a graphite box with Se pellets and selenized using rapid thermal processing furnace at various temperature ($480^{\circ}C{\sim}560^{\circ}C$) without using a toxic $H_2Se$ gas. Effects of Selenization temperature on the morphological, crystallinity, electrical properties and cell efficiency were investigated by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD), J-V measurement system and solar simulator. Further details about effects of selenization temperature on CZTSe thin films will be discussed.