• 제목/요약/키워드: convection coefficient

검색결과 254건 처리시간 0.029초

발열체와 격막이 있고 일부가 열린 복합공간내의 자연대류-복사열전달에 관한 수치적 연구 (A numerical study on the combined natural convection and radiation in a partially open complex enclosure with a heater and partitions)

  • 김태국;민동호;한규익;손봉세;서석호
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.235-251
    • /
    • 1997
  • A numerical simulation on the combined natural convection and radiation is carried out in a partially open rectangular enclosure with a heater by using the finite volume and the S-8 discrete ordinate methods. The fluid inside the enclosure is considered as an absorbing, emitting and anisotropic scattering media. The heater causes a natural circulation of the fluid (10$^{5}$ $^{9}$ ) which results in significant in-flow of the ambient cold fluid through the partially open wall. Comparing the results of pure convection with those of the combined convection- radiation, the combined heat transfer results with small Planck numbers (P$_{l}$ <1.0) show much stronger circulation than those of the pure convection, and the fluid circulation is more evident for larger Rayleigh numbers. When one of three radiative properties - the medium absorption coefficient, the wall reflectivity, and the scattering albedo - increases, the fluid circulation and the heat transfer in the enclosure are reduced. The location of the heater and the open ratio of the right wall are also shown to affect the fluid circulation and heat transfer significantly. However, the anisotropy of the scattering phase function is shown to be unimportant for the fluid circulation and heat transfer within the enclosure considered in this study.

종방향대류 및 고액밀도차가 고려된 접촉융해에 대한 해석해 (An analytical solution for the close-contact melting with vertical convection and solid-liquid density difference)

  • 유호선;홍희기;김찬중
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1165-1173
    • /
    • 1997
  • The steady state close-contact melting phenomenon occurring between a phase change material and an isothermally heated flat plate with relative motion is investigated analytically, in which the effects of vertical convection in the liquid film and solid-liquid density difference are incorporated simultaneously. Not only the scale analysis is conducted to estimate a priori qualitative dependence of system variables on characteristic parameters, but also an analytical solution to a set of simplified model equations is obtained to specify the effects under consideration. These two results are consistent with each other, in that the vertical convection affects both the solid descending velocity and the film thickness, and that the density difference alters only the solid descending velocity. While the effect of vertical convection can be characterized conveniently by a newly introduced temperature gradient factor which asymptotically approaches the unity/zero with decreasing/increasing the Stefan number, that of density difference is represented by the liquid-to-solid density ratio. It is shown that the solid descending velocity depends linearly on the density ratio, and that the ratios of solid descending velocity, film thickness and friction coefficient to the conduction solution are proportional to 3/4, 1/4 and -1/4 powers of the temperature gradient factor, respectively. Also, established is the fact that the effect of convection can be legitimately neglected in the analysis for the range of the Stefan number less than 0.1.

Buongiorno의 비균질 모델을 사용한 나노유체의 층류 자연대류 해석 (COMPUTATION OF LAMINAR NATURAL CONVECTION OF NANOFLUID USING BUONGIORNO'S NONHOMOGENEOUS MODEL)

  • 최석기;김성오;이태호
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.25-34
    • /
    • 2013
  • A numerical study of a laminar natural convection of the CuO-water nanofluid in a square cavity using the Buongiorno's nonhomogeneous model is presented. All the governing equations including the volume fraction equation are discretized on a cell-centered, non-uniform grid employing the finite-volume method with a primitive variable formulation. Calculations are performed over a range of Rayleigh numbers and volume fractions of the nanopartile. From the computed results, it is shown that both the homogeneous and nonhomogeneous models predict the deterioration of the natural convection heat transfer well with an increase of the volume fraction of nanoparticle at the same Rayleigh number, which was observed in the previous experimental studies. It is also shown that the differences in the computed results of the average Nusselt number at the wall between the homogeneous and nonhomogeneous models are very small, and this indicates that the slip mechanism of the Brown diffusion and thermophoresis effects are negligible in the laminar natural convection of the nanofluid. The degradation of the heat transfer with an increase of the volume fraction of the nanoparticle in the natural convection of nanofluid is due to the increase of the viscosity and the decrease of the thermal expansion coefficient and the specific heat. It is clarified in the present study that the previous controversies between the numerical and experimental studies are owing to the different definitions of the Nusselt number.

신경망을 이용한 판온예측모델내 공정상수 설정 방법 (A Computing Method of a Process Coefficient in Prediction Model of Plate Temperature using Neural Network)

  • 김태은;이해영
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.51-57
    • /
    • 2014
  • This paper presents an algorithmic type computing technique of process coefficient in predicting model of temperature for reheating furnace and also suggests a design method of neural network model to find an adequate value of process coefficient for arbitrary operating conditions including test conditons. The proposed neural network use furnace temperature, line speed and slab information as input variables, and process coefficient is output variable. Reasonable process coefficients can be obtained by an algorithmic procedure proposed in this paper using process data gathered at test conditons. Also, neural network model output equal process coefficient under same input conditions. This means that adquate process coefficients can be found by only computing neural network model without additive test even if operating conditions vary.

평판 핀에서의 강제대류 열전달에 미치는 복사효과 (Radiative Effect on the Conjugated Forced Convection-Conduction Heat Transfer in a Plate Fin)

  • 손병진;민묘식;최상경
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.453-462
    • /
    • 1990
  • The interaction of forced convection-conduction with thermal radiation in laminar boundary layer over a plate fin is studied numerically. The analysis is based on complete solution whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum and energy in the fluid boundary layer adjacent to the fin. The fluid is a gray medium and diffusion(Rosseland) approximation is used to describe the radiative heat flux in the energy equation. The resulting boundary value problem are convection-conduction parameter N$_{c}$ and radiation-conduction parameter m, Prandtl number Pr. Numerical results are presented for gases with the Prandtl numbers of 0.7 & 5 with values of N$_{c}$ and M ranging from 0 to 10 respectively. The object of this study is to provide the first results on forced convection-radiation interaction in boundary layer flow over a semi-infinite flay plate which can be used for comparisons with future studies that will consider a more accurate expression for the radiative heat flux. The agreement of the results from the complete solution presented by E. M. Sparrow and those from this paper for the special case of M=0 is good. The overall rate of heat transfer from the fin considering radiative effect is higher than that from the fin neglecting radiative effect. The local heat transfer coefficient with radiative effect is higher than that without radiative effect. In the direction from tip to base, those coefficients decrease at first, attain minimum, and then increase. The larger values of N$_{c}$ M, Pr give rise to larger fin temperature variations and the fin temperature without radiative effect is always higher than that with radiative effect.

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS IN A CANISTER WITH HORIZONTAL INSTALLATION OF DUAL PURPOSE CASK FOR SPENT NUCLEAR FUEL

  • Lee, Dong-Gyu;Park, Jea-Ho;Lee, Yong-Hoon;Baeg, Chang-Yeal;Kim, Hyung-Jin
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.969-978
    • /
    • 2013
  • A full-sized model for the horizontally oriented metal cask containing 21 spent fuel assemblies has been considered to evaluate the internal natural convection behavior within a dry shield canister (DSC) filled with helium as a working fluid. A variety of two-dimensional CFD numerical investigations using a turbulent model have been performed to evaluate the heat transfer characteristics and the velocity distribution of natural convection inside the canister. The present numerical solutions for a range of Rayleigh number values ($3{\times}10^6{\sim}3{\times}10^7$) and a working fluid of air are further validated by comparing with the experimental data from previous work, and they agreed well with the experimental results. The predicted temperature field has indicated that the peak temperature is located in the second basket from the top along the vertical center line by effects of the natural convection. As the Rayleigh number increases, the convective heat transfer is dominant and the heat transfer due to the local circulation becomes stronger. The heat transfer characteristics show that the Nusselt numbers corresponding to $1.5{\times}10^6$ < Ra < $1.0{\times}10^7$ are proportional to 0.5 power of the Rayleigh number, while the Nusselt numbers for $1.0{\times}10^7$ < Ra < $8.0{\times}10^7$ are proportional to 0.27 power of the Rayleigh number. These results agreed well with the trends of the experimental data for Ra > $1.0{\times}10^7$.

초음파 진동이 비등열전달 과정에 미치는 영향에 관한 실험적 연구 (Experimental Study on Effect of Boiling Heat Transfer by Ultrasonic Vibration)

  • 나기대;오율권;양호동
    • 에너지공학
    • /
    • 제15권1호
    • /
    • pp.35-44
    • /
    • 2006
  • 본 연구에서는 비등열전달 과정동안, 초음파 진동이 열전달 과정에 미치는 영향에 관하여 실험적으로 조사해 보았다. 실험은 등온가열조건하에서, 40kHz의 초음파 진동을 가진한 경우와 가진하지 않은 경우로 나누어 비등과정동안의 온도분포를 측정하였고, 대류상태와 과냉상태 그리고 포화상태에서의 열전달계수를 측정하여 열전달 향상율을 비교하여 보았다. 또한, 하이드로폰을 이용하여 초음파 가진시 매질내에 발생하는 음압분포를 측정하고 열전달 향상율과 비교하여 보았다. 실험결과, 비등열전달 과정에 초음파 진동을 가진한 경우, 가진하지 않은 경우와 비교하였을 때 열전달계수가 높게 나타나는 것을 확인하였으며, 특히 대류상태에서 열전달계수가 급격하게 증가하였다. 또한, 초음파 진동의 가진으로 인해 형성되는 음압은 진동자가 부착된 지점에서 주위보다 상대적으로 높게 형성되는 것을 실험적으로 확인하였으며, 초음파 진동으로 인해 형성된 높은 음압이 열전달 향상율에 영향을 미치는 원인의 하나로 작용하고 있음을 알 수 있었다. 결국, 초음파 진동에 의해 매질내에 발생하는 음압은 열전달 향상과 밀접한 관련이 있다고 사료된다.

실린더 형상 변화가 실린더 주위 강제대류에 미치는 영향에 관한 수치적 연구 (A Numerical Study on the Effect of the Cylinder Shape Modification on the Forced Convection Around a Circular Cylinder)

  • 김민호;하만영;윤현식;이진욱
    • 설비공학논문집
    • /
    • 제23권10호
    • /
    • pp.670-677
    • /
    • 2011
  • Direct numerical simulation are performed in order to investigate the effect of the circular cylinder shape on the forced convection around a circular cylinder at the Reynolds number of 300 and Prandtl number of 0.71. Three-dimensional characteristics of fluid flow and heat transfer around the smooth, wavy and torsional cylinders are investigated. A wavy cylinder has the sinusoidal variation in the cross sectional area along the spanwise direction with the wave length of ${\pi}/3$ and wavy amplitude of 0.1. A torsional cylinder has the twisted elliptic cross section with a torsional period of ${\pi}/2$ and an axis ratio of 1.35 corresponding to the major axis of 1.15 and the minor axis of 0.85. The value of time-and surface-averaged drag coefficient for the smooth cylinder is similar to that for the wavy cylinder, but larger than that for the torsional cylinder. The time and surface-averaged lift coefficient for the smooth cylinder is larger than that for the wavy and torsional cylinders. The time-averaged local heat transfer rate for the wavy and torsional cylinders shows different distribution along the circumferential direction, compared to that for the smooth cylinder because of the shape change in the spanwise direction for the cases of the wavy and torsional cylinders.

수평원형관내 나노유체의 혼합대류에 관한 수치적 연구 (Numerical Study of Mixed Convection Nanofluid in Horizontal Tube)

  • 최훈기;임윤승
    • 융합정보논문지
    • /
    • 제9권8호
    • /
    • pp.155-163
    • /
    • 2019
  • 수평원형관에서 나노입자인 산화알미늄과 기본유체인 물의 혼합인 나노유체에 대한 층류 혼합대류열전달현상을 유한체적법의 수치적 방법으로 규명하였다. 나노유체에 대하여 2상 혼합모델을 적용하였으며, 나노입자의 물성은 온도와 체적농도의 함수를 사용하였다. 수치해석에 적용한 모든 모델의 타당성 검증을 위하여 Kim등의 실험결과와 비교하였으며 좋은 결과를 얻었다. 벽면을 일정한 열유속으로 가열하므로 나노유체는 벽면부근에서 형성된 부력에 의하여 2차유동이 생성된다. Richardson수와 나노입자의 농도가 증가할수록 강한 2차유동이 형성되어 열전달을 향상시키게 된다. 또한 Richardson수와 나노입자의 농도가 증가하면 대류열전달계수와 전단응력도 증가한다. 이런 연구들은 열교환기의 성능향상을 위하여 나노유체를 적용하는데 기본자료로 활용이 가능하다. 이번 연구를 기반으로 향후 2중관형열교환기등 다양한 열교환기에 적용할 예정이다.

Theory and technology of growing striation-free crystals

  • Scheel, Hans J.
    • 한국결정성장학회지
    • /
    • 제14권4호
    • /
    • pp.174-186
    • /
    • 2004
  • Striations are growth-induced inhomogeneities which hamper the applications of solid-solution crystals and of doped crystals in numerous technologies. Thus the optimized performance of solid solutions often can not be exploited. The inhomogeneity problem can be solved in specific cases by achieving a distribution coefficient one in growth from melts and from solutions. Macrostep-induced striations can be suppressed by controlling the growth mode, by achieving growth on facets thereby preventing step bunching. Thermal striations are commonly assumed to be caused by convective instabilities so that reduced convection by microgravity or by damping magnetic fields was and is widely attempted to reduce such inhomogeneities. Here it will be shown that temperature fluctuations at the growth interface cause striations, and that hydrodynamic fluctuations in a quasi-isothermal growth system do not cause striations. The theoretically derived conditions were experimentally established and allowed the growth of striation-free crystals of $KTa_{1-x}Nb_xO_3$"KTN" solid solutions. Hydrodynamic variations from the accelerated crucible rotation technique ACRT did not cause striations as long as the temperature was controlled within $0.03^{\circ}$ at $1200^{\circ}C$ growth temperature. Alternative approaches to solve or reduce the segregation and striation problems in growth from melts and from solutions are discussed as well.