Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2019.9.8.155

Numerical Study of Mixed Convection Nanofluid in Horizontal Tube  

Choi, Hoon-Ki (Dept. of Mechanical Engineering, Changwon National University)
Lim, Yun-Seung (Dept. of Mechanical Engineering, Changwon National University)
Publication Information
Journal of Convergence for Information Technology / v.9, no.8, 2019 , pp. 155-163 More about this Journal
Abstract
Laminar mixed convection of a nanofluid consists of water and $Al_2O_3$ in a horizontal circular tube has been studied numerically. Two-phase mixture model has been used to investigate hydrodynamic and thermal behaviors of the nanofluid with variables physical properties. Three dimensional Navier-Stokes, energy and volume fraction equations have been discretized using the finite volume method. The Brownian motions of nanoparticles have been considered to determine the thermal conductivity and dynamic viscosity of $Al_2O_3$-Water nanofluid, which depend on temperature. The calculated results show good agreement with the previous numerical data. Results show that in a given Reynolds number (Re), increasing solid nanoparticles volume fraction and Richardson number (Ri) increases the convective heat transfer coefficient and wall shear stress.
Keywords
Convective heat transfer coefficient; Nanofluid; Mixed convection; Total shear stress; Volume fraction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. U. S. Choi. (1995). Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of Non-Newtonian Flow, ASME, FED 231/MD, 66, 99-105.
2 H. Masuda, A. Ebata, K. Teramae & N. Hishinuma. (1993). Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersions Of -Al2O3, SiO2, and TiO2 Ultra-Fine Particles). Netsu Bussei (Japan), 4, 227-233.
3 S. Lee, S. U. S. Choi, S. S. Li & J. A. Eastman, (1999). Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. Heat Transfer, 121, 280-289.   DOI
4 B. C. Pak & Y. I. Cho. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer, 11, 151-170.   DOI
5 H. K. Choi & G. J. Yoo. (2014). Numerical study on nanofluids forced convection in circular tubes. J. Comput. Fluids Eng, 19, 37-43
6 Y. M. Xuan & Q. Li. (2003). Investigation on Convective Heat Transfer and Flow Features of Nanofluids. Journal of Heat Transfer, 125, 151-155.   DOI
7 M. K. Moraveji, M. Darabi, S. M. Hossein Haddad & R. Davarnejad. (2011). Modeling of Convective Heat Transfer of a Nanofluid in the Developing Region of Tube Flow with Computational Fluid Dynamics. Int. Commun. Heat Mass Transfer, 38, 1291-1295.   DOI
8 S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy & N. Galanis. (2005). Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows. Int. J. Heat and Fluid Flow, 26(4), 530-546.   DOI
9 Y. Mori, K. Futagami, S. Tokuda & M. Nakamura. (1966). Forced convective heat transfer in uniformly heated horizontal tubes, 1st report, Experimental study on the effect of buoyancy. Int. J. Heat Mass Transfer, 9, 453-463.   DOI
10 K. C. Cheng & F. P. Yuen. (1985). Flow visualization studies on secondary flow pattern for mixed convection in the thermal entrance region of isothermally heated inclined pipes. ASME Heat Transfer Division, 42, 121-130.
11 G. S. Barozzi, E. Zanchini & M. Mariotti. (1998). Experimental investigation of combined forced and free convection in horizontal and inclined tubes. Meccanica. 20, 18-27.   DOI
12 C. Zhang. (1992). Mixed convection inside horizontal tubes with nominally uniform heat flux. AIChE Symp. 88, 212-219.
13 G. J. Hwang & H. C. Lai. (1994). Laminar convection heat transfer in a horizontal isothermal tube for high numbers. Int. J. Heat Mass Transfer, 37, 1631-1640.   DOI
14 2019, Fluent, ANSYS Fluent V.19 User Guide, USA.
15 Y. S. Jeong, Y. T Kim & G. C Park. (2016). A Three-dimensional Numerical Weather Model using Power Output Predict of Distributed Power Source. Journal of Convergence for Information Technology, 6, 93-98.
16 M. Manninen, V. Taivassalo & S. Kallio. (1996). On the mixture model for multiphase flow. VTT Publications, 288, Technical Research Centre of Finland.
17 L. Schiller & Z. Naumann. (1935). A drag coefficient correlation, V.D.I. Zeitung 77, 318.
18 K. Khanafer & K. Vafai. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4010-4428.
19 R. S. Vajjha & D. K. Das. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52, 4675-4682.   DOI
20 K. Khanafer, K. Vafai & M. Lightstone. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46, 3639-3653.   DOI
21 K. J. Kim. (2018). A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures. Journal of Convergence for Information Technology, 8, 95-100.
22 S. A. Zonouzi, H. Aminfar & M. Mohammadpourfard. (2014). 3D Numerical Investigation of Thermal Characteristics of Nanofluid Flow through Helical Tubes Using Two-Phase Mixture Model. International Journal for Computational Methods in Engineering Science and Mechanics, 15, 512-521.   DOI
23 D. H Kim et al. (2009). Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics, 9, 119-123.   DOI