• Title/Summary/Keyword: controlled synthesis

Search Result 628, Processing Time 0.022 seconds

Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong;Kum Eun-Joo;Kwon Gi-Seok;Jin Ingnyol;Kuriyama Hiroshi
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Regulation of Tylosin Biosynthesis by Cell Growth Rate in Streptomyces fradiae (Streptomyces fradiae에서 균 성장속도에 의한 tylosin 생합성 조절)

  • 강현아;이정현;이계준
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.353-359
    • /
    • 1987
  • The aim of the present study was to investigate the effects of growth rate on the biosynthesis of tylosin in Streptomyces fradiae. In order to elucidate the relation between the growth rate and the tylosin formation rate, the activities of enzymes involved in oxaloacetate metabolism were determined using cells grown at different growth rates in chemostats. As the results, it was found that the specific rate of tylosin formation($q_{p}$) was closely related to the specific cell growth rate and the maximum value of $q_{p}$ was 1.1mg tylosin, $q_{p}$ cell, $0.013h^{-1}$ at the growth rate $0.013h^{-1}$. However further increase in the growth rate over $0.013h^{-1}$ resulted in apparent decrease of $1_{p}$. The synthesis and activities of citrate synthase, aspartate aminotransferase, and PEP carboxylase were very low at lower growth rate. On the other hand, the activity and synthesis of methylmalonyl-CoA carboxyltransferase was closely related to tylosin formation. Therefore it was concluded that tylosin formation was apparently controlled by the growth rate.

  • PDF

Family of Hsp70 Molecular Chaperones and Their Regulators (Hsp70 분자 샤페론과 조절인자)

  • Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1760-1765
    • /
    • 2007
  • Proteins are involved in promoting or controlling virtually every event on which our lives depend. Proteins are synthesized in cytosol and in the endoplasmic reticulum where their synthesis machinery are tightly controlled. However, not all of newly synthesized proteins are survived and conduct their essential functions to maintain cell's lives. It was reported that one-third of synthesized proteins are rapidly destroyed by proteasome under the most physiological conditions. full-length translated proteins, which survived, must undergo proper folding and assemble process. Some proteins are spontaneously folded while others require molecular chaperones and folding enzymes to be properly folded. Molecular chaperones are ubiquitously present within the subcellular organelles and from bacteria to animals and plants. Among those members of Hsp70 family have been extensively studied and their regulators have been discovered in the last decade. Here, a brief overview is presented for functional mechanism of Hsp70 homologues and the roles of their regulators. Since biological function of Hsp70 family other than chaperonic function are expending the review would give basic understanding of partnership between Hsp70 family and their regulators.

Synthesis of 125I-Labeled Gold Nanoparticles for a Molecular Imaging (분자영상용 방사성 금 나노입자 합성)

  • Son, Min Ju;Rho, Jong Kook;Lee, Joo-Sang;Jang, Beom-Su;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2012
  • Gold nanoparticles (GNPs) have led to the development of a new field in the diagnosis and treatment of diseases such as cancer. An efficient synthesis of gold nanoparticles within the range of 8~57 nm was established by ${\gamma}-ray$ irradiation. The good point of a radiation-based method is the production of gold nanoparticles with a higher concentration and narrower size distribution compared with conventional methods. The size of gold nanoparticles was controlled using two methods. : (i) varying the ${\gamma}-ray$ irradiation dose of 10 to 25 kGy and (ii) varying the concentration of $HAuCl_4$ solution from 4 to 40 mM. In addition, the GNPs were radiolabeled using $[^{125}I]NaI$ in a simple and fast manner with high yields. The produced gold nanoparticles were characterized using a transmission electron microscopy (TEM), a UV-visible spectrophotometer, and a radio-TLC imaging scanner. From these results, these radiolabeled GNPs can be applicable for a radioisotope tag of biomolecules.

Shape design of conformal array using the beam pattern synthesis (빔 패턴 성능 분석을 이용한 곡면 배열 형상 설계)

  • Lee, Keunhwa;Shin, Donghoon;Lim, Jun-Seok;Hong, Wooyoung;Ha, Younghoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.347-358
    • /
    • 2021
  • The objective of this study is to optimize the shape of doubly curved surface where a conformal array is equipped. That surface is modeled with a double-ellipsoid solid controlled by four parameters. By analyzing the performance of the conformal array beams with the beam pattern synthesis, two design parameters are determined. Then, we define the weighted object function which is formulated as the sum of sharp indexes for directivity index, the elevation resolution, and the bearing resolution. The direct calculation on all grids is used to evaluate the weighted object function and seek the optimal value of two design parameters when the weightings are given. In the simulation, four kinds of weighting cases are respectively applied to evaluate the weighted object function. The optimal shapes of double-ellipsoid solid are shown in each case. Especially, when the uniform weightings are used, the double-ellipsoid solid with more smooth surface is obtained.

Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor

  • Woo, Sungyoon;Jo, Mingyeong;Lee, Joon-Seok;Choi, Seung-Ho;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.369-375
    • /
    • 2021
  • In this study, heterogeneous ZnO/CNTF composites were developed to improve the NO2-sensing response, facilitated by the self-heating property. Highly conductive and mechanically stable CNTFs were prepared by a wet-spinning process assisted by the liquid crystal (LC) behavior of CNTs. Metal-organic frameworks (MOFs) of ZIF-8 were precipitated on the surface of the CNTF (ZIF-8/CNTF) via one-pot synthesis in solution. The subsequent calcination process resulted in the formation of the ZnO/CNTF composites. The calcination temperatures were controlled at 400, 500, and 600 ℃ in an N2 atmosphere to confirm the evolution of the microstructures and NO2-sensing properties. Gas sensor characterization was performed at 100 ℃ by applying a DC voltage to induce Joule heating through the CNTF. The results revealed that the ZnO/CNTF composite after calcination at 500 ℃ (ZnO/CNTF-500) exhibited an improved response (Rair/Rgas = 1.086) toward 20 ppm NO2 as compared to the pristine CNTF (Rair/Rgas = 1.063). Selective NO2-sensing properties were demonstrated with negligible responses toward interfering gas species such as H2S, NH3, CO, and toluene. Our approach for the synthesis of MOF-driven ZnO/CNTF composites can provide a new strategy for the fabrication of wearable gas sensors integrated with textile materials.

Synthesis and characterization of NiFe2O4 nanoparticle electrocatalyst for urea and water oxidation (요소 산화반응을 위한 NiFe2O4 나노파티클 촉매 합성 및 특성 분석 )

  • Ki-Yong Yoon;Kyung-Bok Lee;Dohyung Kim;Hee Yoon Roh;Sung Mook Choi;Ji-hoon Lee;Jaehoon Jeong;Juchan Yang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.243-249
    • /
    • 2023
  • Urea oxidation reaction (UOR) via electrochemical oxidation process can replace oxygen evolution reaction (OER) for green hydrogen production since UOR has lower thermodynamic potential (0.37 VRHE) than that of OER (1.23 VRHE). However, in the case of UOR, 6 electrons are required for the entire UOR. For this reason, the reaction rate is slower than OER, which requires 4 electrons. In addition, it is an important challenge to develop catalysts in which both oxidation reactions (UOR and OER) are active since the active sites of OER and UOR are opposite to each other. We prove that among the NiFe2O4 nanoparticles synthesized by the hydrothermal method at various synthesis temperatures, NiFe2O4 nanoparticle with properly controlled particle size and crystallinity can actively operate OER and UOR at the same time.

Design of A Current-mode Bandpass Filter in Receiver for High speed PLC Modem (고속 전력선통신 모뎀용 수신단측 전류모드 대역통과 필터 설계)

  • Bang, Jun-Ho;Lee, Woo-Choun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4745-4750
    • /
    • 2012
  • In this paper a $6^{th}$ 1MHz~30MHz bandpass filter for Power line communication(PLC) modem receiver is designed using current mode synthesis method which is good to design the low-voltage and low-power filter. The designed bandpass filter is composed of cascade connecting between $3^{rd}$ Butterworth highpass filter and $3^{rd}$ Chebychev lowpass filter. As a core circuit in the current-mode filter, a current-mode integrator is designed with new architecture which can improve gain and unity gain frequency of the integrator. The gain and the unity gain frequency of the designed integrator is each 32.2dB and 247MHz. And the cutoff frequency of the designed $6^{th}$ bandpass filter can be controlled to 50MHz from 200KHz according to controlling voltage and the power consumption is 2.85mW with supply voltage, 1.8V. The designed bandpass filter was verified using a $0.18{\mu}m$ CMOS parameter.

Design and Fabrication of 0.5~4 GHz Low Phase Noise Frequency Synthesizer (낮은 위상잡음 특성을 갖는 0.5~4 GHz 주파수 합성기 설계 및 제작)

  • Park, Beom-Jun;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.333-341
    • /
    • 2015
  • In this paper, a 0.5~4 GHz frequency synthesizer having good phase noise performance is proposed. Wideband output frequencies of the synthesizer were synthesized using DDS(Direct Digital Synthesizer) and analog direct frequency synthesis technology in order to obtain fast settling time. Also in order to get good phase noise performance, 2.4 GHz DDS clock was generated by VCO(Voltage Controlled Oscillator) which was locked by the 100 MHz reference oscillator using SPD(Sample Phase Detector). The phase noise performance of wideband frequency synthesizer was estimated and the results were compared with the measured ones. The measured phase noise of the frequency synthesizer was less then -121 dBc @ 100 kHz at 4 GHz.

Controlled Release Dosage Form of Narcotic Antagonist(I): Synthesis of Biodegradable Polyphosphazenes and Preparation and Release Characteristics of Naloxone Implant (마약길항제의 방출 제어형 제제 (제1보) : 생체분해성 polyphosphazenes의 합성과 나록손 이식제제의 제조 및 용출특성)

  • Park, Joo-Ae;Lee, Seung-Jin;Kim, Hyung-Kuk;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.109-116
    • /
    • 1995
  • For the administration of narcotic antagonist with short half-life and low patient compliance, the sustained release system using biodegradable matrix is effective. Polyphosphazenes are of considerable interest as biodegradable matrix systems for controlled release of drugs. In this study, biodegradable polyphosphazenes available for the sustained release implantable device were synthesized, and their application was examined. Poly[dichlorophosphazene] was synthesized by solution polymerization method and confirmed with IR spectrum. Poly[bis(ethyl glycinate) phosphazene] and poly[ (diethyl glutamate)-co-(ethyl glycinate)phosphazene] were then produced by substitution of amino acid alkyl esters for chloride side groups. Using these polymers, the implantable devices of 1 mm thickness and $10{\times}10\;mm$ size containing naloxone hydrochloride were prepared and their release and degradation profiles were measured. In the case of poly[bis(ethyl glycinate)phosphazene] with swelling characteristics, degradation rate was slower than the release rate, showing that the release rate is partly dependent on the swelling rate. In contrast, the degradation rate of polyl[(diethyl glutamate)-co-(ethyl glycinate)phosphazene] matrix was identical with release rate of naloxone hydrochloride. On the basis of these results, it is expected that these polymers can be applied to sustained release implantable systems delivering narcotic antagonist.

  • PDF