DOI QR코드

DOI QR Code

Shape design of conformal array using the beam pattern synthesis

빔 패턴 성능 분석을 이용한 곡면 배열 형상 설계

  • 이근화 (세종대학교 국방시스템공학과) ;
  • 신동훈 (국방과학연구소 해양기술연구원) ;
  • 임준석 (세종대학교 국방시스템공학과) ;
  • 홍우영 (세종대학교 국방시스템공학과) ;
  • 하용훈 (국방대학교 국방과학학과)
  • Received : 2021.05.14
  • Accepted : 2021.07.09
  • Published : 2021.07.31

Abstract

The objective of this study is to optimize the shape of doubly curved surface where a conformal array is equipped. That surface is modeled with a double-ellipsoid solid controlled by four parameters. By analyzing the performance of the conformal array beams with the beam pattern synthesis, two design parameters are determined. Then, we define the weighted object function which is formulated as the sum of sharp indexes for directivity index, the elevation resolution, and the bearing resolution. The direct calculation on all grids is used to evaluate the weighted object function and seek the optimal value of two design parameters when the weightings are given. In the simulation, four kinds of weighting cases are respectively applied to evaluate the weighted object function. The optimal shapes of double-ellipsoid solid are shown in each case. Especially, when the uniform weightings are used, the double-ellipsoid solid with more smooth surface is obtained.

본 연구의 목적은 곡면배열이 설치된 이중 곡률을 갖는 곡면의 형상을 최적화하는 것이다. 곡면은 4개의 미지수로 결정되는 이중 타원구로 모델링 하였다. 곡면 배열의 빔 패턴 분석을 통해서 4개의 미지수 중에 2개의 설계 파라미터를 결정했다. 빔 설계 인자의 sharp 지수의 합으로 표현되는 가중치 목적 함수를 정의했다. 각각의 sharp 지수는 여러 빔 설계 인자 중에 지향 지수, 고각 해상도, 방위각 해상도로 정의했다. 가중치가 주어졌을 때, 모든 격자에 대한 직접 계산을 통해 가중치 목적 함수를 평가하고 2개의 설계 파라미터의 최적값을 찾았다. 시뮬레이션에는 총 4종류의 가중치를 사용했다. 각각의 가중치에 대한 최적 곡면 형상 및 빔 패턴 분석 결과를 보였다. 특별히 균등 가중치를 사용했을 때, 다른 가중치를 사용했을 때보다 부드러운 표면을 갖는 이중 타원체의 형상이 얻어졌다.

Keywords

Acknowledgement

본 논문은 주요 내용은 국방과학연구소의 지원을 받아 수행되었음 (UD190004DD).

References

  1. L. Josefsson and P. Persson, Conformal Array Antenna Theory and Design (Wiley, NY, 2006), Chap. 1.
  2. H. Kim and Y. Roh, "Analysis of the radiation pattern of conformal array transducers" (in Korean), J. Acoust. Soc. Kr. 29, 431-438 (2010).
  3. H. Kim and Y. Roh, "Optimal design of conformal array transducers" (in Korean), J. Acoust. Soc. Kr. 31, 51-61 (2012). https://doi.org/10.7776/ASK.2012.31.1.051
  4. S. Jung, K. Lee, S. Nam, Y. Chung, Y. Yoon, H. Ryu, and H. Jung, "Beam forming study and optimum antenna location selection for wideband conformal array antenna" (in Korean), JKIEES, 27, 138-146 (2016).
  5. H. L. Knudsen, "The field radiated by a ring quasiarray of an infinite number of tangential or radial dipoles," Proc. of IRE. 781-789 (1953).
  6. P. Persson, Anlysis and design of conformal array antennas, (Ph. D. thesis in KTH Royal Institute of Technology, 2001).
  7. H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory (Wiley, NY, 2002), Chap. 7.
  8. T. A. Wettergren, J. P. Casey, and R. L. Stret, "A numerical optimization approach to acoustic hull array design," J. Acoust. Soc. Am. 112, 2735-2741 (2002). https://doi.org/10.1121/1.1518982
  9. P. Jorna, H. Schippers, and J. Verpoorte, "Beam synthesis for conformal array antennas with efficient tapering," Proc. of 5th Europe Workshop (2007).
  10. Y. Ma and Z. He, "Beampattern optimization for a conformal projecting array of transducers with baffle effect and mutual coupling among elements," Proc. of Acoustics '08, 985-989 (2008).
  11. W. Tang, Y. Zhou, and P. Zhang, "Broadband power pattern synthesis for conformal arrays," Proc. of 7th Int. Conf. on Natural Computation, 2019-2022 (2011).
  12. L. Zou, J. Laseby, and Z. He, "Beamformer for cylindrical conformal array of non-isotropic antennas," Advances in Electrical and Computer Engineering, 11, 39-42 (2011). https://doi.org/10.4316/AECE.2011.01006
  13. M. Rasekh and S. R. Seydnejad, "Design of an adaptive wideband beamforming algorithm for conformal array," IEEE communications letter, 18, 1955-1958 (2014). https://doi.org/10.1109/LCOMM.2014.2357417
  14. B. D. Braaten, S. Roy, I. Irfanullah, S. Nariyal, and D. E. Anagnostou, "Phase-compensated conformal antennas for changing spherical surfaces," IEEE Trans. Antennas Propag. 62, 1880-1887 (2014). https://doi.org/10.1109/TAP.2014.2298881
  15. B. Sun, C. Liu, Y. Liu, X. Wu, Y. Li, and X. Wang, "Conformal array pattern synthesis and activated elements selection strategy based on PSOGSA algorithm," Int. J. Antennas and Propag. 2015, 858357 (2015).
  16. P. Rocca, G. Oliver, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies-a review," Proc. of the IEEE 104, 544-560 (2016). https://doi.org/10.1109/JPROC.2015.2512389
  17. R. P. Hodges, Underwater Acoustics (Wiley, NY, 2010), Chap 3.
  18. The Hhistory of British Submarine Sonars, http://rnsubs.co.uk/articles/development/sonar.html, (Last viewed July 14, 2021).