Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong (Department of Food and Nutrition, Andong National University) ;
  • Kum Eun-Joo (Department of Food and Nutrition, Andong National University) ;
  • Kwon Gi-Seok (School of Bioresource Sciences, Andong National University) ;
  • Jin Ingnyol (Department of Microbiology, Kyungpook National University) ;
  • Kuriyama Hiroshi (Biochemical Engineering Lab., National Institute of Bioscience and Human Technology, AIST)
  • Published : 2005.08.01

Abstract

Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Keywords

References

  1. Bourbouloux, A., P. Shahi, A. Chakladar, S. Delrot, and A.K. Bachhawat. 2000. Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 275, 13259- 13265 https://doi.org/10.1074/jbc.275.18.13259
  2. Hans, M.A., E. Heinzle, and C. Wittmann. 2001. Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 56, 776-779 https://doi.org/10.1007/s002530100708
  3. Hans, M.A., E. Heinzle, and C. Wittmann. 2003. Free intracellular amino acids pools during autonomous oscillations in Saccharomyces cerevisiae. Biotechnol. Bioeng. 82, 143-151 https://doi.org/10.1002/bit.10553
  4. Hansen, J. and P.F. Johannesen. 2000. Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Sacchromyces cerevisiae. Mol. Gen. Genet. 263, 535-542 https://doi.org/10.1007/s004380051199
  5. Henson, M.A. 2004 Modeling the synchonization of yeast respiratory oscillations. J. Theor. Biol. 231, 443-458 https://doi.org/10.1016/j.jtbi.2004.07.009
  6. Keulers, M., A.D. Satroutdinov, T. Suzuki, and H. Kuriyama. 1996a. Synchronization affector of autonomous short-period-sustained oscillation of Saccharomyces cerevisiae. Yeast 12, 673-682 https://doi.org/10.1002/(SICI)1097-0061(19960615)12:7<673::AID-YEA958>3.0.CO;2-C
  7. Keulers, M. and H. Kuriyama. 1998. Information processing in cells and tissues, p. 85-94. Plenum Press, New York
  8. Keulers, M., T. Suzuki, A.D. Satroutdinov, and H. Kuriyama. 1996b Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol. FEMS Microbiol. Lett. 142, 253-258 https://doi.org/10.1111/j.1574-6968.1996.tb08439.x
  9. Kitamoto, K., K. Yoshizawa, Y. Ohsumi, and Y. Anraku. 1988. Dynamic aspects of vaculor and cytosolic amino acids pools of Saccharomyces cerevisiae. J. Bacteriol. 170, 2683-2686 https://doi.org/10.1128/jb.170.6.2683-2686.1988
  10. Klevecz, R.R., J. Bolen, G. Forrest, and D.B. Murray. 2004. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl. Acad. Sci. USA 101, 1200-1205
  11. Kwak, W.J., G.S. Kwon, I. Jin, H. Kuriyama, and H.-Y. Sohn. 2003. Involvement of oxidative stress in the regulation of H2S production during ultradian metabolic oscillation of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 219, 99-104 https://doi.org/10.1016/S0378-1097(02)01198-9
  12. Lee, Y.-Y., S.-J. Kim, E.-H. Park, and C.-J. Lim. 2003. Glutathione content and the activities of glutathione-synthesizing enzymes in fission yeast are modulated by oxidative stress. J. Microbiol. 41, 248-251
  13. Lloyd, D., K.M. Lemar, L. Eshantha, J. Salgado, T.M. Gould, and D.B. Murray. 2003. Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosis and time: a hypothesis. FEMS Yeast Res. 3, 333-339 https://doi.org/10.1016/S1567-1356(03)00071-0
  14. Lloyd, D., L. Eshantha, J. Salgado, M.P. Turner, and D.B Murray. 2002. Respiratory oscillations in yeast; clock-driven mitochondrial cycles of energization. FEBS Lett. 519, 41-44 https://doi.org/10.1016/S0014-5793(02)02704-7
  15. Marina, P., O.H. Martinez-Costa, I.L. Calderon, and J.J. Aragon. 2004. Characterization of the aspartate kinase from Saccharomyces cerevisiae and of its interaction with threonine. Biochem. Biophys. Res. Commun. 321, 584-591 https://doi.org/10.1016/j.bbrc.2004.07.009
  16. Miyake, T., H. Sammoto, M. Kanayama, K.-I. Tomochika, S. Shinoda, and B.-I. Ono. 1999. Role of the sulfate asmmilation pathway in utilization of glutathione as a sulphur source by Saccharomyces cerevisiae. Yeast 15, 1449-1457 https://doi.org/10.1002/(SICI)1097-0061(199910)15:14<1449::AID-YEA469>3.0.CO;2-S
  17. Mountain, H.A., A.S. Bystrom, J.L. Larsen, and C. Korch. 1991. Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae. Yeast 7, 781-803 https://doi.org/10.1002/yea.320070804
  18. Murray, D.B., F.A.A. Engelen, M. Keulers, H. Kuriyama, and D. Lloyd. 1998. $NO^+$, but not NO., inhibits respiratory oscillations in ethanol-grown chemostat cultures of Saccharomyces cerevisiae. FEBS Lett. 431, 297-299 https://doi.org/10.1016/S0014-5793(98)00777-7
  19. Murray, D.B., F.A.A Engelen, D. Lloyd, and H. Kuriyama. 1999. Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology 145, 2739-2745 https://doi.org/10.1099/00221287-145-10-2739
  20. Murray, D.B., S. Roller, H. Kuriyama, and D. Lloyd. 2001. Clock control of ultradian respiratory oscillation found during yeast continuous culture. J. Bacteriol. 183, 7253-7259 https://doi.org/10.1128/JB.183.24.7253-7259.2001
  21. Ono, B., T. Hazu, S. Yoshida, T. Kawato, S. Shinoda, J. Brzvwczy, and A. Paszewski, 1999. Cystein biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 15, 1365-1375 https://doi.org/10.1002/(SICI)1097-0061(19990930)15:13<1365::AID-YEA468>3.0.CO;2-U
  22. Satroutdinov, A.D., H. Kuriyama, and H. Kobayshi. 1992. Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol. Lett. 98, 261-268 https://doi.org/10.1111/j.1574-6968.1992.tb05525.x
  23. Shin, J.-H., Y.-M. Kim, J.-W. Park, J.-E. Lim, and I.-K Rhee. 2003. Resistance of Sacchromyces cerevisiae to fungicide Chlorothalonil. J. Microbiol. 41, 219-223
  24. Sohn, H.-Y., D.B. Murray, and H. Kuriyama. 2000. Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony. Yeast 16,1185-1190 https://doi.org/10.1002/1097-0061(20000930)16:13<1185::AID-YEA619>3.0.CO;2-W
  25. Sohn, H.-Y. and H. Kuriyama. 2001a. The role of amino acids in the regulation of hydrogen sulfide production during ultradian respiratory oscillation of Sacchromyces cerevisiae. Arch. Microbiol. 176, 69-78 https://doi.org/10.1007/s002030100295
  26. Sohn, H.-Y. and H. Kuriyama. 2001b. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulfite reductase. Yeast 18, 125-135 https://doi.org/10.1002/1097-0061(20010130)18:2<125::AID-YEA655>3.0.CO;2-9
  27. Wolf, J., H.-Y. Sohn, R. Heinrich, and H. Kuriyama. 2001. Mathematical analysis of a mechanism for autonomous metabolic oscillations in continuous culture of Saccharomyces cerevisiae. FEBS Lett. 499, 230-234 https://doi.org/10.1016/S0014-5793(01)02562-5