Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.12.1760

Family of Hsp70 Molecular Chaperones and Their Regulators  

Chung, Kyung-Tae (Department of Clinical Laboratory Science Dong-Eui University)
Publication Information
Journal of Life Science / v.17, no.12, 2007 , pp. 1760-1765 More about this Journal
Abstract
Proteins are involved in promoting or controlling virtually every event on which our lives depend. Proteins are synthesized in cytosol and in the endoplasmic reticulum where their synthesis machinery are tightly controlled. However, not all of newly synthesized proteins are survived and conduct their essential functions to maintain cell's lives. It was reported that one-third of synthesized proteins are rapidly destroyed by proteasome under the most physiological conditions. full-length translated proteins, which survived, must undergo proper folding and assemble process. Some proteins are spontaneously folded while others require molecular chaperones and folding enzymes to be properly folded. Molecular chaperones are ubiquitously present within the subcellular organelles and from bacteria to animals and plants. Among those members of Hsp70 family have been extensively studied and their regulators have been discovered in the last decade. Here, a brief overview is presented for functional mechanism of Hsp70 homologues and the roles of their regulators. Since biological function of Hsp70 family other than chaperonic function are expending the review would give basic understanding of partnership between Hsp70 family and their regulators.
Keywords
Protein synthesis; molecular chaperones; Hsp70; BiP; cofactors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boisrame, A., J. M. Beckerich and C. Gaillardin. 1996. Sls1p, an endoplasmic reticulum component, is involved in the protein translocation process in the yeast Yarrowia lipolytica. J. Biol. Chem. 271, 11668-11675   DOI   ScienceOn
2 Boorstein, W. R., T. Ziegelhoffer and E. A. Craig. 1994. Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38, 1-17
3 Brehmer, D., S. Rudiger, C. S. Gassler, D. Klostermeier, L. Packschies, J. Reinstein, M. P. Mayer and B. Bukau. 2001. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol. 8, 427-432   DOI   ScienceOn
4 Kabani, M., J. M. Beckerich and C. Gaillardin. 2000. Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation- dependent manner in the yeast endoplasmic reticulum. Mol. Cell Biol. 20, 6923-6934   DOI   ScienceOn
5 Travers, K. J., C. K. Patil, L. Wodicka, D. J. Lockhart, J. S. Weissman and P. Walter. 2000. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249-258   DOI   ScienceOn
6 Kabani, M., C. McLellan, D. A. Raynes, V. Guerriero and J. L. Brodsky. 2002b. HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett. 531, 3339-3342
7 Kowarik, M., S. Küng, B. Martoglio and A. Helenius. 2002. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10, 769-778   DOI   ScienceOn
8 Neidhardt, F. C. 1987. Chemical composition of Escherichia coli. In Escherichia coli and Salmonella typhimurium; cellular and molecular biology. pp. 1334-1345, vol 2. Neidhardt, F.C.(ed). ASM., Washington D.C
9 Albert, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. 2002. Molecular Biology of The Cell. pp. 355-365, 4th ed., Garland Science. New York
10 Anttonen, A. K., I. Mahjneh, R. H. Hamalainen, C. Lagier-Tourenne, O. Kopra, L. Waris, M. Anttonen, T. Joensuu, H. Kalimo, A. Paetau, L. Tranebjaerg, D. Chaigne, M. Koenig, O. Eeg-Olofsson, B. Udd, M. Somer, H. Somer and A. E. Lehesjoki. 2005. The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat. Genet. 37, 1309-1311   DOI   ScienceOn
11 Szabo, A., T. Langer, H. Schroder, J. Flanagan, B. Bukau and F. U. Hartl. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91, 10345-10349
12 Crowley, K. S., S. Liao, V. E. Worrell, G. D. Reinhart and A. E. Johnson. 1994. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78, 461-471   DOI   ScienceOn
13 Sondermann, H., C. Scheufler, C. Schneider, J. Hohfeld, F. U. Hartl and I. Moarefi. 2001. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291, 1553-1557   DOI
14 Johnson, A. E. and M. A. van Waes. 1999. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799-842   DOI   ScienceOn
15 Kabani, M., J. M. Beckerich and J. L. Brodsky. 2002a. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol. Cell Biol. 22, 4677-4689   DOI   ScienceOn
16 Raynes, D.A and V. Jr. Guerriero. 1998. Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J. Biol. Chem. 273, 32883-32888   DOI   ScienceOn
17 Senderek, J., M. Krieger, C. Stendel, C. Bergmann, M. Moser, N. Breitbach-Faller, S. Rudnik-Schoneborn, A. Blaschek, N.I. Wolf, I. Harting, K. North, J. Smith, F. Muntoni, M. Brockington, S. Quijano-Roy, F. Renault, R. Herrmann, L. M. Hendershot, J. M. Schroder, H. Lochmuller, H. Topaloglu, T. Voit, J. Weis, F. Ebinger and K. Zerres. 2005. Mutations in SIL1 cause Marinesco- Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat. Genet. 37, 1312-1314   DOI   ScienceOn
18 Takayama, S., D. N. Bimston, S. Matsuzawa, B. C. Freeman, C. Aime-Sempe, Z. Xie, R. I. Morimoto and J. C. Reed. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16, 4887-4896   DOI   ScienceOn
19 Minami, Y., J. Hohfeld, K. Ohtsuka and F. U. Hartl. 1996. Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J. Biol. Chem. 271, 19617-19624   DOI   ScienceOn
20 Zhao, L., C. Longo-Guess, B. S. Harris, J. W. Lee and S. L. Ackerman. 2005. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat. Genet. 37, 974-979   DOI   ScienceOn
21 Netzer, W. J. and F. Ulrich Hartl. 1998. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends in Biochem. Sci. 23, 68-73   DOI   ScienceOn
22 Haas, I. G. and M. Wabl. 1983. Immunoglobulin heavy chain binding protein. Nature 306, 387-389   DOI   ScienceOn
23 Zeiner, M. and U. Gehring. 1995. A protein that interacts with members of the nuclear hormone receptor family, identification and cDNA cloning. Proc. Natl. Acad. Sci. USA. 92, 11465-11469
24 Chung, K. T., Y. Shen, and L. M. Hendershot. 2002. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J. Biol. Chem. 277, 47557-475663   DOI   ScienceOn
25 Wei, J. and L. M. Hendershot. 1995. Characterization of the nucleotide binding properties and ATPase activity of recombinant hamster BiP purified from bacteria. J. Biol. Chem. 270, 26670-26676   DOI   ScienceOn
26 Wei, J., J. R. Gaut and L. M. Hendershot. 1995. In vitro dissociation of BiP-peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis. J. Biol. Chem. 270, 26677-26682   DOI   ScienceOn
27 Zeiner, M., M. Gebauer and U. Gehring. 1997. Mammalian protein RAP46: an interaction partner and modulator of 70 kDa heat shock proteins. EMBO J. 16, 5483-5490   DOI   ScienceOn
28 Hohfeld, J. and S. Jentsch. 1997. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 16, 6209-6216   DOI   ScienceOn
29 Bimston, D., J. Song, D. Winchester, S. Takayama, J. C. Reed and R. I. Morimoto. 1998. BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J. 17, 6871-6878   DOI   ScienceOn
30 Bergman, L. W. and W. M. Kuehl. 1979. Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides. J. Biol. Chem. 254, 5690-5694
31 Tyson, J. R. and C. J. Stirling. 2000. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J. 19, 6440-6452   DOI   ScienceOn
32 Gaut, J. R. and L. M. Hendershot. 1993. Mutations within the nucleotide binding site of immunoglobulin-binding protein inhibit ATPase activity and interfere with release of immunoglobulin heavy chain. J. Biol. Chem. 268, 7248-7255
33 Mayer, M. P. and B. Bukau. 2005. Regulation of Hsp70 Chaperones by Co-chaperones. pp. 516, In J Buchner and Y. Kiefhaber (ed), Protein Folding Handbook. Part II, Wiley-VCH
34 Takayama, S., T. Sato, S. Krajewski, K. Kochel, S. Irie, J. A. Millan and J. C. Reed. 1995. Cloning and functional analysis of BAG-1, a novel Bcl-2-binding protein with anti- cell death activity. Cell 80, 279-284   DOI   ScienceOn
35 Kelly, W. L. 1998. The J-domain family and recruitment of chaperone power. Trends Biochem. Sci. 23, 222-227   DOI   ScienceOn
36 Liberek, K., J. Marszalek, D. Ang, C. Georgopoulos and M. Zylicz. 1991. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88, 2874-2878