• 제목/요약/키워드: control parameters

검색결과 9,296건 처리시간 0.048초

수중운동체의 $H_\infty$및 시변슬라이딩모드 제어 ($H_\infty$ and Time-Varying Sliding Mode Control of Underwater Vehicle)

  • 박철재;이만형;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.540-545
    • /
    • 1993
  • When modeling an underwater vehicle uncertainty arises in the presence of unsteady flow. It is difficult to include the uncertainty in the model and is therefore desirable to investigate robust controller design methods for the underwater vehicle. In the paper two robust control methods are applied for the underwater system. One is standard H$_{\infty}$ control and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for H$_{\infty}$ control and design parameters for time-varying switching surfaces are provided. Simulations and comparison are carried out.t.

  • PDF

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

Constructing Nonlinear Sliding Surface for Spacecraft Attitude Control Problems

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.41-44
    • /
    • 1999
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters(MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  • PDF

GPC 기법을 이용한 자기동조 PID 제어기 설계

  • 윤강섭;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.326-329
    • /
    • 1995
  • PID control has been widely used for real control system Further, there are muchreasearches on control schemes of tuning PID gains. However, there is no results for discrete-time systems with unknown time-dealy and unknown system parameters. On the other hand, Generalized predictive control has been reported as a useful self-tuning control technique for systems with unknown time-delay. So, in this study, based on minimization of a GPC criterion, we present a self-tuning PID control algorithm for unknown parameters and unknown tiem-delay system. A numerical simulation was presented to illuatrate the effectiveness of this method.

  • PDF

DC Injection Control for Grid-Connected Single-Phase Inverters Based on Virtual Capacitor

  • Wang, Wei;Wang, Ping;Bei, Taizhou;Cai, Mengmeng
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1338-1347
    • /
    • 2015
  • DC injection is a critical issue in transformerless grid-connected inverters. DC injection control based on virtual capacitor has the advantages of low cost, low loss, high accuracy and easy implementation. In this paper, the principle of DC injection control based on virtual capacitor was analyzed. In addition, the applicable conditions, working process, steady state error and advantages were also discussed in detail. The design of the control parameters based on virtual capacitor was proposed in a grid-connected inverter with LCL filter. The robustness of the control parameters was also discussed. Simulation and experimental results verify the validity of the analysis and demonstrate that this research has a certain value in engineering applications.

Speed Control System for Marine Diesel Engine Using Genetic Algorithm

  • So, Myung-Ok;Oh, Sea-June;Lee, Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.237-242
    • /
    • 2004
  • The conventional PID controller has been widely used in many industrial control systems although modern control theory has been remarkably developed recently. Because engineer can easily understand how to deal with the PID controller which consists of three parameters. This PID control method, however. has a tendency to depend on experience. Genetic Algorithm can search the control parameters according to systematic procedure in a selected plant. In this paper the real coded genetic algorithm is used to search proper values of the PID controller parameters for marine diesel engine. Simulation results show the effectiveness of the proposed scheme.

Control Method for the Tool Path in Aspherical Surface Grinding and Polishing

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.51-56
    • /
    • 2006
  • This paper proposes a control algorithm, which is verified experimentally, for aspherical surface grinding and polishing. The algorithm provides simultaneous control of the position and interpolation of an aspheric curve. The nonlinear formula for the tool position was derived from the aspheric equation and the shape of the tool. The function was partitioned at specific intervals and the control parameters were calculated at each control section. The position, acceleration, and velocity at each interval were updated during the process. A position error feedback was introduced using a rotary encoder. The feedback algorithm corrected the position error by increasing or decreasing the feed speed. In the experimental verification, a two-axis machine was controlled to track an aspherical surface using the proposed algorithm. The effects of the control and process parameters were monitored. The results demonstrated that the maximum tracking error with tuned parameters was at the submicron level for concave and convex surfaces.

Habitability evaluation considering various input parameters for main control benchboard fire in the main control room

  • Byeongjun Kim ;Jaiho Lee ;Seyoung Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4195-4208
    • /
    • 2022
  • In this study, operator habitability was numerically evaluated in the event of a fire at the main control bench board (MCB) in a reference main control room (MCR). It was investigated if evacuation variables including hot gas layer temperature (HGLT), heat flux (HF), and optical density (OD) at 1.8 m from the MCR floor exceed the reference evacuation criteria provided in NUREG/CR-6850. For a fire model validation, the simulation results of the reference MCR were compared with existing experimental results on the same reference MCR. In the simulation, various input parameters were applied to the MCB panel fire scenario: MCR height, peak heat release rate (HRR) of a panel, number of panels where fire propagation occurs, fire propagation time, door open/close conditions, and mechanical ventilation operation. A specialized-average HRR (SAHRR) concept was newly devised to comprehensively investigate how the various input parameters affect the operator's habitability. Peak values of the evacuation variables normalized by evacuation criteria of NUREG/CR-6850 were well-correlated as the power function of the SAHRR for the various input parameters. In addition, the evacuation time map was newly utilized to investigate how the evacuation time for different SAHRR was affected by changing the various input parameters. In the previous studies, it was found that the OD is the most dominant variable to determine the MCR evacuation time. In this study, however, the evacuation time map showed that the HF is the most dominant factor at the condition of without-mechanical ventilation for the MCR with a partially-open false ceiling, but the OD is the most dominant factor for all the other conditions. Therefore, the method using the SAHRR and the evacuation time map was very useful to effectively and comprehensively evaluate the operator habitability for the various input parameters in the event of MCB fires for the reference MCR.

Intelligent Washing Machine: A Bioinspired and Multi-objective Approach

  • Milasi, Rasoul Mohammadi;Jamali, Mohammad Reza;Lucas, Caro
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.436-443
    • /
    • 2007
  • In this paper, an intelligent method called BELBIC (Brain Emotional Learning Based Intelligent Controller) is used to control of Locally Linear Neuro-Fuzzy Model (LOLIMOT) of Washing Machine. The Locally Linear Neuro-Fuzzy Model of Washing Machine is obtained based on previously extracted data. One of the important issues in using BELBIC is its parameters setting. On the other hand, the controller design for Washing Machine is a multi objective problem. Indeed, the two objectives, energy consumption and effectiveness of washing process, are main issues in this problem, and these two objectives are in contrast. Due to these challenges, a Multi Objective Genetic Algorithm is used for tuning the BELBIC parameters. The algorithm provides a set of non-dominated set points rather than a single point, so the designer has the advantage of selecting the desired set point. With considering the proper parameters after using additional assumptions, the simulation results show that this controller with optimal parameters has very good performance and considerable saving in energy consumption.

신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구 (A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique)

  • 이영진;서진호;이권순
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.