• 제목/요약/키워드: control mode

검색결과 5,496건 처리시간 0.041초

위치.속도 제어 방식을 이용한 매스터 컨트롤러 지능형 혼합 제어 알고리즘 (An intelligent mixed mode algorithm of a master controller using position and rate mode)

  • 김기홍;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.245-248
    • /
    • 1997
  • The control modes used in teleoperation are position control mode, and rate control mode. This paper presents the problems of the conventional control modes, through simulation, proposes an intelligent mixed control mode that converts the operation mode between the position mode and the rate mode intelligently by judging the operator's intention using the real-time measurement data. The effectiveness of the proposed intelligent mixed control mode is demonstrated and compared to other typical control modes through simulation and actual experiment.

  • PDF

퍼지-슬라이딩 모드를 이용한 스카라 로보트의 제어에 관한 연구 (A Study on Development of SCARA robot Using Fuzzy-Sliding mode control)

  • 고석조;이민철;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.241-245
    • /
    • 1995
  • This paper shows that the proposed fuzzy-sliding mode for SCARA robot control could reduce chattering problemed in sliding mode control and is robust against parameter uncertainties. It was very small quantities of chattering in the fuzzy-sliding mode control conpared with that in sliding mode control with two dead-band. In here, the sliding mode control with two dead-band is the method to reduce some chattering by changing into a continuous variable lower control input gain when a state value in pahase palne converged sithin two dead-band. But, the fuzzy-sliding mode control for more reducing chattering is the method to change control input by slicing mode into that by fuzzy rule within two dead-band. Simulations show that the effect of reducing chattering by the fuzzy-sliding mode is superior to sliding mode control with two dead-band.

  • PDF

PD-슬라이딩 모드 제어의 절환을 통한 강인한 SPMSM 속도 제어기 설계 (Design of SPMSM Robust Speed Servo Controller Switching PD and Sliding Mode Control Strategies)

  • 손주범;서영수;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.249-255
    • /
    • 2010
  • The paper proposes a new type of robust speed control strategy for permanent magnet synchronous motor by using PD-sliding mode hybrid control. The PD control has a good performance in the transient region while the sliding mode controller provides the robustness against system uncertainties. Taking advantages of the two control strategies, the proposed control method utilizes the PD control in the approaching region to the sliding surface and the sliding mode control near at the sliding surfaces. The chattering problem of the sliding mode controller is eliminated by applying the saturation function for the switching function of the sliding mode control. The stability of the sliding mode control is verified by using Lyapunov function with the proper selection of variable gains. It is shown that with this simple switching algorithm, stability of the overall hybrid control system is ensured. Through the simulations, the PD-sliding mode algorithm is shown to have a good performance in the transient response as well as being robust against disturbances. The robustness of the PD-sliding mode algorithm is further demonstrated against various external disturbances in the real experiments of SPMSM motor control.

다중 슬라이딩 모드 제어 방법의 성능 평가 (The performance analysis of multiple sliding mode control)

  • 장욱;주진만;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.658-660
    • /
    • 1995
  • This paper presents a performance analysis of the multiple sliding mode control for SISO system. The multiple sliding mode control technique uses sliding surfaces for each state. The performance analysis is done by comparison between the multiple sliding mode control and the sliding mode control. Overall performance of the multiple sliding mode control is improved over that of the sliding mode control. Results of numerical simulations are presented.

  • PDF

토크모드 기반의 토크 제어 방법을 적용한 2.75MW 풍력터빈의 동적 응답 (Dynamic Response of a 2.75MW Wind Turbine Applying Torque Control Method Based on Torque-Mode)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제16권6호
    • /
    • pp.5-11
    • /
    • 2013
  • Torque control methods of wind turbine are mainly classified into two methods: torque-mode and speed-mode methods. The traditional torque-mode method, in which generator torque proportional to square of generator speed is determined, has been chosen in many wind turbines but its response is slower as they are larger in multi-MW size. Torque control methods based on both speed-mode and torque-mode can be used to make response of wind turbine faster. In this paper, two torque control methods based on the traditional torque-mode method are applied to a 2.75 MW wind turbine. It is shown through some simulation results for real turbulence wind speeds that torque control method based on torque-mode has the merit of reducing fluctuations of generated power than PI controller based on speed-mode.

슬라이딩 모드 외란 관측기와 제어기를 이용한 DC 모터 전류 제어기 설계 (Design of a DC Motor Current Controller Using a Sliding Mode Disturbance Observer and Controller)

  • 김인혁;손영익
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.417-423
    • /
    • 2016
  • Using a sliding mode controller and observer techniques, this paper presents a robust current controller for a DC motor in the presence of parametric uncertainties. One of the most important issues in the practical application of sliding mode schemes is the chattering phenomenon caused by switching actions. This paper presents a novel sliding mode controller that incorporates an integral control with a sliding mode disturbance observer to attenuate the chattering by reducing the controller/observer switching gains. The proposed sliding mode disturbance observer is designed to estimate a relatively slow varying signal in the equivalent lumped disturbance owing to system uncertainties. Combining the estimated uncertainty with the sliding mode control input, the proposed controller can achieve the control objective by using the relatively low gain of the controller. The proposed disturbance observer does not include the switching control input of the baseline sliding mode controller to reduce the observer switching gain. In the proposed approach, the integral sliding mode control is used to improve the steady state control performance. Comparative computer simulations are carried out to demonstrate the performance of the proposed method. Through the simulation results, the proposed controller realizes the robust performance with reduced current ripples.

Fuzzy Slide Mode Control을 이용한 Control Actuator System (Control Actuator System used in Fuzzy Slide Mode Control)

  • 양문상;이영우;정순배
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.199-202
    • /
    • 2008
  • 본 논문은 Fuzzy Slide Mode Control 및 BLDC모터를 이용하여 공기의 부하를 모사한 Actuator System에 관한 연구이다. 모터를 제어하기 위한 알고리즘으로 PID, PD, fuzzy Slide Mode Control의 특징을 비교 분석하였고 외란의 영향에 강한 Fuzzy Slide Mode Control을 적용하였다. 모터의 토크를 제어하여 실제 공기 부하에 맞는 토크를 모사함으로써 최대 2.3Nm의 토크와 50Hz의 응답 특성을 얻었다.

  • PDF

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

능동 현가 장치의 외란 적응 슬라이딩 모드 제어 (Active Suspension using Disturbance Accommodating Sliding Mode Control)

  • 김종래;김진호
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

Design of a Fuzzy-Sliding Mode Controller for a SCARA Robot to Reduce Chattering

  • Go, Seok-Jo;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.339-350
    • /
    • 2001
  • To overcome problems in tracking error related to the unmodeled dynamics in the high speed operation of industrial robots, many researchers have used sliding mode control, which is robust against parameter variations and payload changes. However, these algorithms cannot reduce the inherent chattering which is caused by excessive switching inputs around the sliding surface. This study proposes a fuzzy-sliding mode control algorithm to reduce the chattering of the sliding mode control by fuzzy rules within a pre-determined dead zone. Trajectory tracking simulations and experiments show that chattering can be reduced prominently by the fuzzy-sliding mode control algorithm compared to a sliding mode control with two dead zones, and the proposed control algorithm is robust to changes in payload. The proposed control algorithm is implemented to the SCARA (selected compliance articulated robot assembly) robot using a DSP (digital signal processor) for high speed calculations.

  • PDF